Controlling CSO Discharges in the City of Toronto: Don River and Central Waterfront Project

Michael D'Andrea, M.E.Sc., P.Eng. Chief Engineer and Executive Director Engineering & Construction Services City of Toronto

> CERIU – INFRA 2017 Congress December 4, 2017 Montreal, Canada

TORONTO

Presentation Overview

- City of Toronto Sewer Infrastructure
- Wet Weather Flow Water Quality Impacts in Toronto
 - International Joint Commission "Area of Concern"
- Lower Don River and Central Waterfront
 - Project Study Components
 - Receiving Water-based Approach
 - Dry Weather Overview and Wet Weather Sources
- Receiving Water Response
- Cost versus Level of Control
- Final Integrated Plan
 - Collection and Storage
 - Treatment

Concluding Comments

DA TORONTO

2

Toronto's Sewer Infrastructure

Sewer infrastructure: 10,400 km

- Storm Sewers 4,550 km
- Combined Sewers 1,300 km
- Sanitary Sewers 4,150 km
- Large Trunks
 400 km
- 80 combined sewer overflow outfalls (34 directly into Lake Ontario)

 2,600 storm sewer outfalls directly into Lake Ontario)

Combined Sewer Service Area

Sewer Outfall Locations

Wet Weather Flow Environmental Impacts

Toronto – "Area of Concern" (as identified by the International Joint Commission - 1987)

- "Impaired Beneficial Uses" attributed largely to discharges from:
 - Combined sewer overflows
 - Storm sewers
- Impacts on fisheries and aquatic biota
- Sediment quality and benthic invertebrates
- Contributes to fish consumption advisories
- Loss of fish habitat

ORONTO

Nutrient enrichment: nuisance algal growth

Lower Don River and Central Waterfront

DON RIVER

- Original focus of International Joint Commission assessment of Toronto's water quality conditions
- Don River long recognized as one of Canada's most polluted rivers
- Water quality impairment due to CSOs and stormwater:
 - Elevated nutrient and bacteria levels
- Inner Harbour being revitalized from heavy industrial to mixed use luxury residential and recreation

ORONTO

Wet Weather Flow Master Plan

- Adopted by City Council in 2003
- Watershed based approach
- Mitigate water quality and flooding impacts from wet weather flows
- Receiving water-based approach aimed at achieving Provincial Water Quality Objectives
- Hierarchy to managing stormwater
 - Source Control (lot level)
 - Conveyance System (road allowance)
 - End-of-pipe (before discharge)
- Public education a key component25-year implementation schedule

Implementation Report 2006

11 TORONTO Water

Wet Weather Flow Master Plan (Lower Don River)

Recommended Facilities:

- Lower Don Tunnel
- Cardona/NTTP Tunnel
- Taylor Massey Creek Tunnel
- Stan Wadlow Park Tank
- Inner Harbour Tunnel: West and East Don

ferences: WWFMP Study Area 1 Final Report, July 2003 Table 8.3

www.mp Study Area 1 Final Report, July 2003 Table 8.3 WWFMP Overview and Implementation, July 2003

Strategy Development: Development of Strategies for Treating Collected Combned Sewer Overfflows(CSO) and Additional Wasterwater Flows

Lower Don River and Central Waterfront "Dry Weather" Overview

- Don Trunk Sewer System:
 - Services 750,000 population
 - Continued growth requirements and additional capacity requirements
 - Downstream end "Coxwell Trunk Sewer"
 - Deep tunnel built in 1950s
 - 2.6 metre (9') diameter
 - Depths reaching 40 metres
 - Maintenance hole spacing of 1.5 km
 - No redundancy
 - Flows: 400 million litres/day (3 X Don River base flows)

Integrated Study Approach

Dry Weather Servicing

Wet Weather Flow Control

Project Study Components

Lower Don River and Central Waterfront "Wet Weather" Sources

Overview:

- Inner Harbour:
 - 11 CSO & 16 Storm Sewers
 - Taylor Massey Creek:
 - 13 CSO & 6 Storm Sewers
- Lower Don River:
 - 27 CSO & 19 Storm Sewers

TOTAL: **CSOs** - 51 Storm Sewers - 41 [Average 42 CSO events/year]

Receiving Water Quality Response Existing Conditions

Scale 1:24280

Baseline 2031 Blue Flag Status NEW

Receiving Water Quality Response Existing Conditions

MOECC: F-5-5 Control Level *

1 overflow per season - Blue Flag Status

During a seven-month period (April to November), capture and treat for an average the dry weather flow plus 90% of the volume resulting from wet weather flow that is above the dry weather flow.

DA TORONTO

Receiving Water Quality Response Cost versus Level of Control

Final Integrated Plan Wet Weather Flow Collection and Storage

3 tunnels (22.1 km)

- 16 km 6.3m dia. rock tunnel
 - 6 km 4.5m dia. soft ground tunnel
- 737,900 cubic metres of storage
- 12 Tunnel Shafts
 - Diameter: 8 metres to 20 metres
 - Depth: up to 50 metres
- 3 offline storage tanks for wet weather flows in remote areas

Coxwell Bypass Tunnel

Final Integrated Plan

Wet Weather Flow Treatment

- High-rate treatment facility for CSOs and stormwater intercepted
- <u>UV disinfection</u> of effluent
- Wet weather flow pumping station treatment capacity of 500 MLD
- Full Scale Demonstration CSO Tank Retrofit
 - increase in flow rate X 10
 - 70% suspended solids removal
- Commercial examples:
 - Actiflo; Densadeg
- Located at Ashbridges Bay Treatment property

 New pumping station
 Wet weather flows separated from wastewater flows

Final Integrated Plan

Project Stages	Year															Estimated						
	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	Cost (\$millions)
Stage 1 - Coxwell Bypass																						\$500
High Rate Treatment Plant																						\$300
Stage 2 - Taylor Massey Tunnel																						\$260
Stage 3 - Off-line Storage Tanks																						\$140
Stage 4 - Inner Harbour West Tunnel																						\$245
Stage 5 - Diversion Chambers																						\$280
 Total actimated cost for 	r	F	0	+0			0		f +	h	0	D					¢.	1	Λ	\mathbf{c}	= 7	Dillion

Total estimated cost for 5 stages of the Plan is \$1.425 Billion

 Increases to \$1.725 Billion when High Rate Treatment Plant is included

Concluding Comments

- We have been discussing the need for significant improvements in Don River and Inner Harbour for decades
- Our desire is to move towards action and realize improvements: long overdue!
- Must join fellow municipalities in the Great Lakes Basin as they to move to delist as "Areas of Concern"
- Implementation based on current funding by Toronto Water rate supported exclusively
- Need for support in ensuring successful completion of this project; and advancing the delisting of Toronto as an "Area of Concern"

DA TORONTO

THANK YOU / MERCI

Michael D'Andrea, M.E.Sc., P.Eng.

Chief Engineer and Executive Director Engineering & Construction Services City of Toronto

> E: michael.dandrea@toronto.ca T: 416-392-8256

