Sharing lessons from the Netherlands

A country below see level

Chris Zevenbergen, Professor Water Science and Engineering Department IHE Delft -TuDelft

Xx October – 2 November 2019, Montreal

ХХ

Some notions

We can expect fewer but larger disasters in the future

(Fundamental) changing patterns of the 'system'

Time horizons are shifting

Transformative change: long lead times

This presentation

A. Two key questions:
1. What are the challenges?
2. How do we respond and what are emerging strategies?
(from an international perspective)

B. Room for the River (Dutch approach)

The Netherlands

Flood disaster 1953

ŋ,

Emphasis on flood protection

Delta Commission 1.0*

- Predict and control regime;
 - Neglect of man;
- Top down;
- Delta works;
- Stringent safety standards based on fixed drivers.

*1970-2010

1995

2.7.2

THE OWNER DESIGNATION OF

- THE REAL OF

River flood: 1993 and 1995 (narrow escape)

Delta Commission 2.0*

- Integrated and adaptive regime;
- Changing drivers and deep uncertainty;
- Multi-level governance:
- Effective public participation;
- Long-term perspective and short term benefits
- Protection, prevention & preparedness.

* 2014 - 2050

Adaptive delta management (ADM)

- Connecting short-term decisions with longterm tasks (related to watersafety)
- Thinking in adaptation pathways instead of end-goals

 Tend to postpone large scale interventions
 Linking investment agendas (aging infrastructure, nature, recreation..) Source: DP2015

Rotterdam

Bron: Bobbink TU Delft i.o.v. gemeente Rotterdam

Evolution flood risk management

What is anticipation?

"Action based on (existing) knowledge"

Knowledge:

 Information that predicts events (forecasting) & possible routes into the future (projections)

 Information to signal changing system dynamics

What is anticipation?

Decision Anticipation / Preparedness: lead time a few days in advance; "low" uncertainty

⁻reedom of choice number <u>of options</u> Decision Anticipation / Prevention: lead time >>10 years in advance; "high" uncertainty

Preparedness measures with lead time of a few hrs/days - Evacuation

- Construction temp. flood ways
- Cleaning drainage infrastructure
- Temp. flood proofing infrastructure

Prevention measures with lead time \geq 10 years

- Dike strengthening
- River widening
- Storm surge barriers
- Dams
- Underground storage

days years decades Lead/warning Time

Challenge nr 1. Coping with uncertainty in future predictions (1)

Strategy 1: Prepare for the worst

- Resource intensive;
- Might have strong impact (spatial, social);
- Residual risk

Strategy 2: Wait for scientific certainty/consensus

- Maybe too late for timely readjustment (implementation period);
- Maybe new insights will NOT increase confidence bounds;
- Risk might be increasing due to anthropogenic changes

Can we afford these strategies?

Challenge nr 1. Coping with uncertainty in future predictions (1)

Strategy 1: Prepare for the worst

- Resource intensive;
- Might have strong impact (spatial, social);
- Residual risk

Strategy 2: Wait for scientific certainty/consensus

- Maybe too late for timely readjustment (implementation period);
- Maybe new insights will NOT increase confidence bounds;
- Risk might be increasing due to anthropogenic changes

Strategy 3: Adaptive planning, adaptive decision making

- Dynamic plan, adaptive pathways (start with small steps)
- Monitoring, evaluation & corrective action
- Inclusive public participation

Challenge nr 1. Coping with uncertainty in future predictions (2)

IPCC AR6 new report in 2021:

New climate scenario's

Dutch Delta Program:

- Present scenario (2100): 85 cm SLR
- New scenario (2100): 200 cm SLR

Flood defenses and SLR Incremental change ?

Flood defenses and SLR

Transformative change

Source: Geert vd Meulen (TuD)

TUDelft Delft Delft University of Technology

(Shorten coast line)

Long-term projections: lead time of interventions is increasing

lead time uncertain

uncertainty range

decades

Long-lifetime decisions

- Difficult to define performance criteria and risk margins
- Interventions decisions generally call for high investment costs, transformative change
- Increasing lead times
- Calls for a shift from adaptive planning to planned adaptation ?

Challenge nr 2: Extreme whether events

Alexandria, 2015

رجمال زقن

Daily rainfall: cluster of events Alexandria, Egypt

Hurricane Floren Caro

WILMIN

 23.59" (IT'S S WETTEST SINGLE
 2018 RAINFA 86.79" SO FAR...
 DDE AKC DDE

BREAKS PRE 83.65" OF RAIN

Precipitation Frequency – ILM *Elizabethtown*

PDS-based depth-duration-frequency (DDF) curves Latitude: 34.6267°, Longitude: -78.5783°

GLOBAL CENTER ON ADAPTATION

OUR WORK GLOBAL COMMISSION ON ADAPTATION SOLUTIONS NEWS

NEWS RESOURCES EVENTS ABOUT

T CONTACT

To deliver climate adaptation, we must invest in early warning systems

Technological change: information systems

European Centre for Medium-Range Weather Forecasts (ECMWF)

Ambitious targets

"to make skillful (ensemble) forecasts of highimpact weather events up to **10 days** ahead"

"to predict large-scale patterns and regime transitions up to **4 weeks** ahead"

Forecasts: lead (warning) time to intervene is increasing Forecast lead time uncertainty range days

Short-life time decisions

- Interventions expected to have a high benefit cost ratio
- Uncertainties associated with 'preparedness' interventions are *relatively* low
- Increasing warning (lead) times expand the deadline for long-life time decisions (infrastructure investments)

What are emerging strategies?

Domain of anticipatory flood risk management

Domain of anticipatory flood risk management

Domain of anticipatory flood risk management

Three types of decisions (based on lifetime)

Lead time

Long-lifetime decisions Urban infrastructures Flood defenses Planned urban development

Medium-term incremental adaptations

Short-term flexible/temporal decisions EWS Temporal FRTe EM plan

TUDelft Delft University of Technology

Consequence/operation period

1995 Waal

concept

The Dutch Room for the River

USSELMEER

ZOMERBEDVERLACING

Room for the River: 39 projects

LESSEMPER

Room for the River: features

- dealing with uncertainty
- new analytical methods to facilitate discourse

- strategic flood risk management
- dual objective: safety & spatial quality

Room for the River Programme

Transition to more sustainable flood management: from "fighting against water" towards "living with water"

Key components:

- 1. Long term lens (climate change, population, ...)
- 2. Stronger integration with other disciplines such as spatial planning
- 3. Decentralized planning and execution

Final remarks

- 1. Sense of urgency to act now
- 2. Preparedness and prevention still conceived as separate strategies
- 3. Climate change discussion drives:
 - setting longer time horizons LT strategies (lead times are increasing)
 - increasing "preparedness" (ST strategies) (expanding warning times)
 - shifting from adaptive planning to planned adaptation
- 1. Opportunities integration preparedness & prevention:
 - to maximize the value of existing assets
 - to increase flexibility in long-life time decisions (infrastructure projects)
 - to increase level of (flood) resilience

