

Centre d'expertise et de recherche en infrastructures urbaines

www.ceriu.qc.ca

CONFÉRENCE

Évaluation des galerie multiréseaux comme option économiquement viable pour Montréal

Feasibility Analysis of Multi-purpose Utility Tunnels in Montreal

PAR Dr. Amin Hammad, Professor at Concordia University Yisha Luo, Master Student Ali Alaghbandrad, PhD student Tersoo Genger, PhD student

PALAIS DES CONGRÈS DE MONTRÉAL INFRA 2015 – 5 DÉCEMBRE 2017

Contents

- Introduction of multi-purpose utility tunnels (MUTs)
- MUT advantages and disadvantages
- MUT development in the world
- MUT planning
- Multi-criteria decision making
- Conclusions

Introduction of multi-purpose utility tunnels (MUTs): Buried utilities

https://www.youtube.com/watch?v=Wa_WF061Wig&ab_channel=liq9994; http://www.unitracc.com/know-how/fachbuecher/rehabilitation-and-maintenance-of-drainsand-sewers/rehabilitation/replacement-en/utility-tunnel-en

http://www.themunicipal.com/2018/03/communicating-vital-is-key-to-handling-abandoned-utilities/

Introduction of multi-purpose utility tunnels (MUTs)

Singapore

Prague, Czech Republic

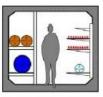
https://www.ura.gov.sg/sales/MarinaUnionSt/MV-large%20floor%20plate.html

https://en.wikipedia.org/wiki/Utility_tunnel

Introduction of multi-purpose utility tunnels (MUTs)

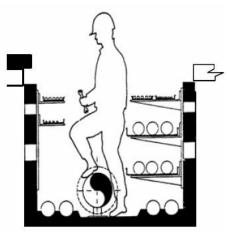
MUT Definition

An underground utilidor containing one or more utility systems, permitting the installation, maintenance, and removal of a utility system without making street cuts or excavations.

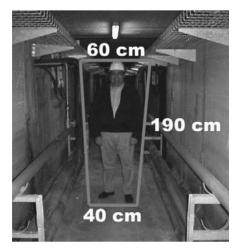

(Canto-Perello and Curiel-Esparza, 2013)

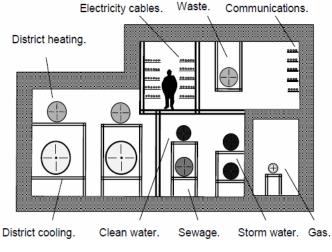
MUT classification based on depth

(Rogers and Hunt, 2006; Hunt and Rogers, 2014)


Shallow Cover: 0.5-2 m

Deep Cover: 2-80 m




MUT classification based on types

Searchable

Compartmentalized

(Rogers and Hunt, 2006)

MUT constructions methods

- Cast-in-place concrete
 - Simple with high flexibility in execution
 - Longer duration
- Prefabricated concrete/fiber glass segments
 - Faster execution
 - Higher quality
 - Transportation of large segments issues
 - Possible weakness in joints

Contents

- Introduction of multi-purpose utility tunnels (MUTs)
- MUT advantages and disadvantages
- MUT development in the world
- MUT planning
- Multi-criteria decision making
- Conclusions

MUT advantages and disadvantages

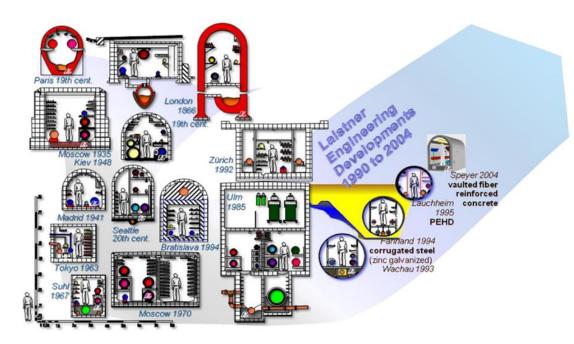
- Advantages
- Significant reduction of repeated excavations for maintenance and repair;
- Improved inspection and maintenance of utilities;
- Minimization of damage and corrosion of utilities;
- Decreased traffic congestion;
- Improved health and safety and less impact on the environment.

(Cano-Hurtado & Canto-Perello, 1999; Hunt & Rogers, 2006; Laistner, 1997; Canto-Perello & Curiel-Esparza, 2013; Clé de Sol, 2005; Hunt et al., 2014; Canto Perello, J. & Curiel Esparza, 2003; Gilchrist & Allouche, 2005; Ormsby, 2009; CERIU, 2010; Najafi & Kim, 2004)

MUT advantages and disadvantages

- Disadvantages
- High initial cost;
- Compatibility and safety issues between utilities (e.g. gas and electricity)
- Security risks related to human attacks;
- Complicated coordination of utility providers.

(Cano-Hurtado & Canto-Perello, 1999; Hunt & Rogers, 2006; Hunt & Rogers, 2005; Canto-Perello & Curiel-Esparza, 2013; Canto-Perello et al., 2009)



Contents

- Introduction of multi-purpose utility tunnels (MUTs)
- MUT advantages and disadvantages
- MUT development in the world
- MUT planning
- Multi-criteria decision making
- Conclusions

MUT development in the world

MUTs in the world from 1866

(Laistners A. & Laistner H., 2012)

MUTs constructed in the 19th century

MUTs Construction from 1921 to 1960

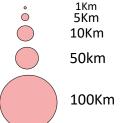
MUTs Construction from 1961 to 1980

- 15 in France and 8 in Japan.
- Countries including Belgium , Czech Republic, Switzerland, Germany and the UK also constructed MUTs .

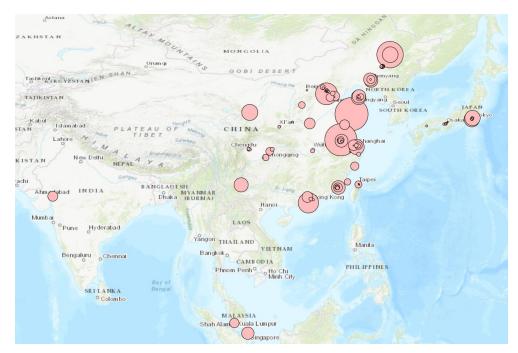
MUTs Construction from 1981 to 2000

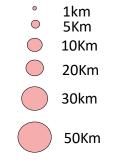
• Majority of which was built in Czech Republic(33%), Japan Constructed about 30%.

MUTs Construction from 2001 to 2019



- Currently about 100 MUTs are either under construction or have been commissioned, 80% are in China.
- Taiwan is actively involved in the construction of MUTs but there is limited data on the MUTs.
- Countries like Iran, Qatar, Malaysia, UK, Israel, etc. are also involved in the construction of MUTs.


Varying MUT lengths in Europe



Varying MUT lengths in Asia

MUTs in North America

Majority of the MUTs found in North America are situated on University campuses, Hospitals, Military installations and Private establishments like Disney world in Florida.

Contents

- Introduction of multi-purpose utility tunnels (MUTs)
- MUT advantages and disadvantages
- MUT development in the world
- MUT planning
- Multi-criteria decision making
- Conclusions

MUT planning

- MUT planning is a key factor of urban underground space (UUS) planning which is an important part of urban planning. (Canto-Perello et al., 2016)
- Safety and security issues increase the complexity of MUT planning. (Canto-Perello et al., 2016)
- MUT planning includes **MUT location selection** and **utility type selection**.

Long-term plan for MUT construction

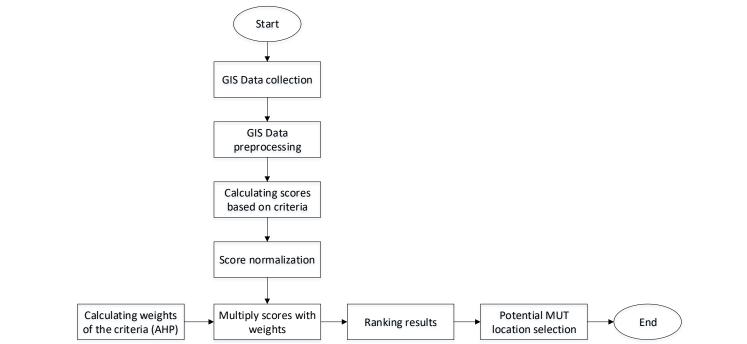
MUT location selection

- High density areas such as commercial areas, high density underground areas (e.g. land use, population density);
- Areas with high traffic volume and high utility density;
- Areas with future repair and construction projects (e.g. repairs of roads, utilities, new metro lines)

(Peng et al., 2018)

MUT location selection: 8 main criteria

- Annual Average Daily Traffic (AADT)
- Road class
- Utility density
- Number of expected excavations for utility repair activities
- Underground development projects
- Population density
- Land use
- Near to public facilities/high-rise buildings



Contents

- Introduction of multi-purpose utility tunnels (MUTs)
- MUT advantages and disadvantages
- MUT development in the world
- MUT planning
- Multi-criteria decision making
- Conclusions

Multi-criteria decision making for MUT location selection

Multi-criteria decision making: Data scoring and normalization

- All criteria must be scored using the same scale (e.g. 0-1).
- Different criteria are normalized differently.
- Criteria with **non numeric attributes** are assigned scores based on relevance.
- Attributes with higher relevance are given high scores and vice versa.
 - Road class
 - Underground development projects
 - Land use

Multi-criteria decision making: Data scoring and normalization

 Road class criterion is normalized based on a scale of 0-1.

Road class	Score
class 0 – Rues locales (Local roads)	0.5
class 1 – Certaines voies piétonnières (Pedestrian routes)	0.2
class 2 – Places d'affaire (Business places)	0.6
class 3 – Quai (Wharf)	0.1
class 4 – Privée (Private)	0.1
class 5 – Collectrices (Collectors)	0.8
class 6 – Artères secondaires (Secondary arteries)	0.8
class 7 – Artères principals (Main arteries)	1.0
class 8 – Autoroutes (Highways)	1.0
class 9 – Rue projetée (Projected streets)	0.3

Multi-criteria decision making: Data scoring and normalization

• Underground development projects criterion is scored as 0 or 1.

Underground development projects	Scores
Yes	1
Νο	0

Multi-criteria decision making: Data scoring and normalization

 Land use criterion is normalized based on a scale of 0-1.

Land use	Scores
Activites Diversifiees (Diversified activities)	1.0
Agricole (Agricultural)	0.1
Conservation (Preservation)	0.1
Emplois (Employment)	1.0
Infrastructure (Infrastructure)	0.7
Institution (Institution)	0.9
Mixe (Mix)	0.8
Parc (Park)	0.1
Religieux (Religious)	0.2
Residential (Residential)	0.6

Multi-criteria decision making: Data scoring and normalization

- Criteria with numeric attribute values
 - AADT
 - Utility density
 - Number of expected excavations for utility repair activities
 - Population density
 - Near to public facilities/high-rise buildings

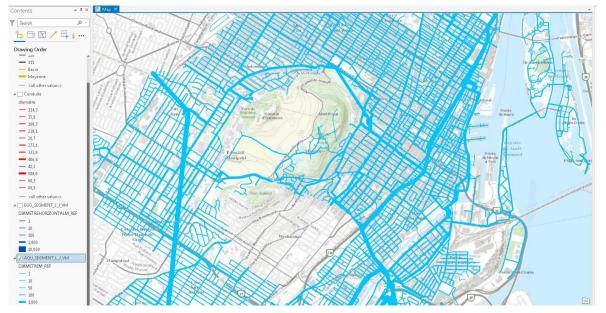
are normalized using

Normalized score = $\frac{X_i - X_{min}}{X_{max} - X_{min}}$

Equation 1

Multi-criteria decision making: Data scoring and normalization

- Utility density (UD)
 - Total number of utilities
 - Level of utilities


$$UD = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} L_{ij} LS_{ij}}{l_r}$$

UD = Utility density of one road segment; i=Utility type in the road segment (1 to n); j=Number of utility levels in one utility type (1 to m); L_{ij} =Length of different utility shapes; LS_{ij} =Level score (based on diameter of pipes etc.); I_r =Length of the road segment.

Multi-criteria decision making: Data scoring and normalization

• Utility density: Water network (Thickness based on pipe diameter)

Multi-criteria decision making: Data scoring and normalization

• Utility density: Electricity network (Thickness based on voltage)

Multi-criteria decision making: Data scoring and normalization

- Number of expected excavations for utility repair activities (NE)
- For now, use breakage rate to predict this criterion.
- Breakage rate: number of breakage per km per year.

$$NE = \sum_{i=1}^{n} \sum_{j=1}^{m} BR_{ij} LS_{ij}$$

NE =Number of expected excavations for utility repair activities for one road segment; i=Utility type in the road segment (1 to n); j=Utility segment for each utility type i (1 to m); BR=Breakage rate

LS=Level score (based on diameter of pipes etc.);

Multi-criteria decision making: Data scoring and normalization

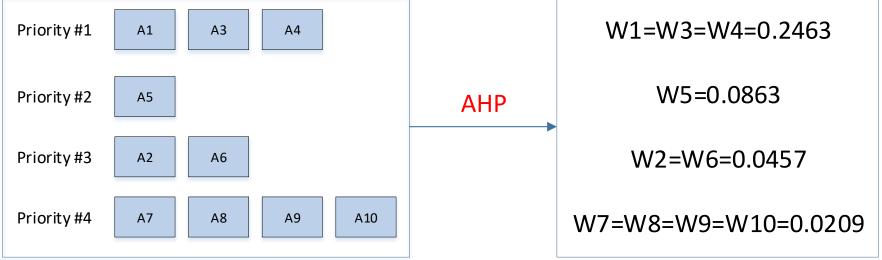
- Population density = $\frac{Population}{Area}$
- Near to public facilities/high-rise buildings is represented by the number of public facilities/high-rise buildings that are within a predefined distance from the road segments (e.g. 500 m).

Multi-criteria decision making: Analytic hierarchy process (AHP)

Using AHP to define weights of the criteria:

- Creating a hierarchical model which consists of the goal, criteria, subcriteria and alternatives
- Building a pairwise comparison matrix for the criteria
- Deriving the scale of weights and checking the consistency
- Ranking the options (R. W. Saaty, 1987; T. L. Saaty, 2008)

Multi-criteria decision making: Analytic hierarchy process (AHP)


Value of importance	Explanation
1	Two criteria are equal
3	One criterion is slightly more important than the other
5	One criterion is moderately more important than the other
7	One criterion is very strongly more important than the other
9	One criterion is extremely more important than the other

Multi-criteria decision making: Analytic hierarchy process (AHP)

Importance of criteria (A1-A10)

Weights

Multi-criteria decision making

• The total score of each road segment:

$$S = \sum_{i=1}^{n} w_i x_i$$

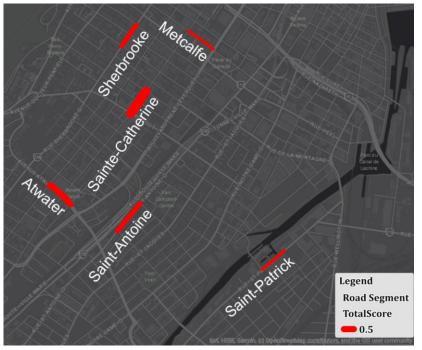
S: total evaluation score;

 w_i : weight of evaluation criterion $i (\sum_{i=1}^{n} w_i = 1)$;

 x_i : value of evaluation criterion *i* (0< $x_i \le 1$);

n: number of criteria.

• The road segments with higher scores are chosen.



Multi-criteria decision making: Case study

	Weights (%)	Sainte-Catherine	Sherbrooke	Atwater	Metcalfe	Saint-Antoine	Saint-Patrick
Length (m)		205.48	196.49	217.90	239.32	272.85	226.67
AADT	8.01	N/A	N/A	N/A	N/A	N/A	N/A
Road class	7.05	0.80	0.80	0.80	0.80	0.80	0.80
Utility density	24.46	0.76	1.00	0.96	0.35	0.58	0.32
Number of excavations	16.24	1.00	0	0	0	0.53	0
Underground development project	18.63	1	0	0	0	0	0
Population density	9.76	0.26	0.42	1.00	0.15	0.64	0.28
Land use	8.40	0.83	0.80	0.80	0.80	0.60	0.80
Near to public facilities/high-rise buildings	7.45	1.00	0	1.00	0	0	0
Total score		0.76	0.41	0.53	0.22	0.40	0.23

Multi-criteria decision making: Case study

Conclusions

- MUT construction decreased in European countries in recent years;
- MUTs have a rapid development in Asian countries, especially in China;
- Although the initial cost is high, there is a high potential of MUT development that can contribute to the development of smarter, more sustainable and resilient cities;
- The general MCDM method for MUT location selection based on GIS spatial analysis is feasible.

Centre d'expertise et de recherche en infrastructures urbaines

www.ceriu.qc.ca

Thank you!

Dr. Amin Hammad

Concordia Institute for Information Systems Engineering (CIISE), Concordia University Tel: (514)-8482424 ext. 5800

Email: hammad@ciise.concordia.ca

