

INFRASTRUCTURE ASSESSMENT COMMITTEE (IAC) PACP Version 8 Updates & QA/QC

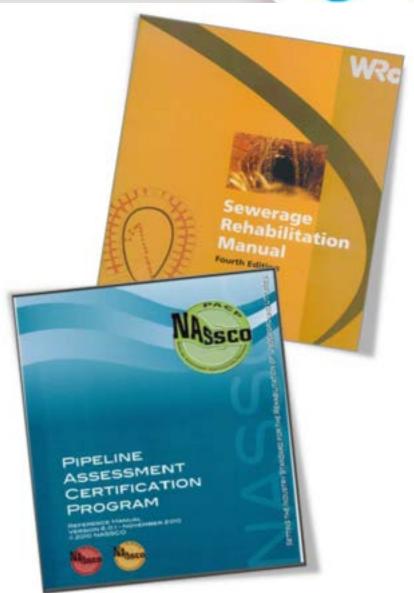
ONPANIE U

CERIU Congrès INFRA 4 décembre, 2023 2PM

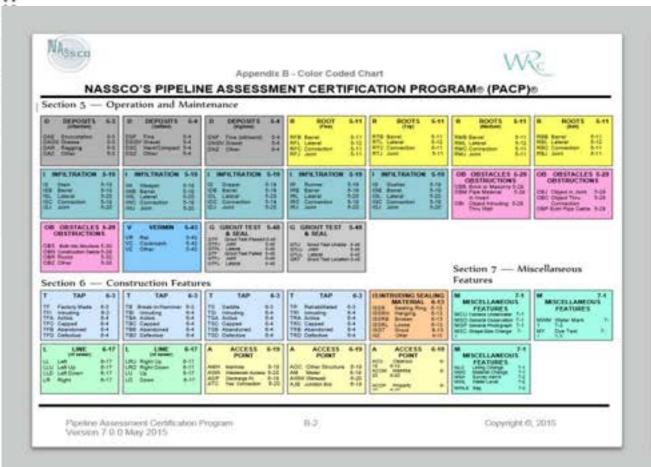
- Tanya Stephens, A.Sc.T., GIS (pg)
 - President, Infrastructure Assessment Academy Inc.
 - Condition Assessment Program Manager, Town of Newmarket, Ontario
 - Co-Chair, NASSCO Infrastructure Assessment Committee
 - CANADIAN NASSCO-Certified Trainer

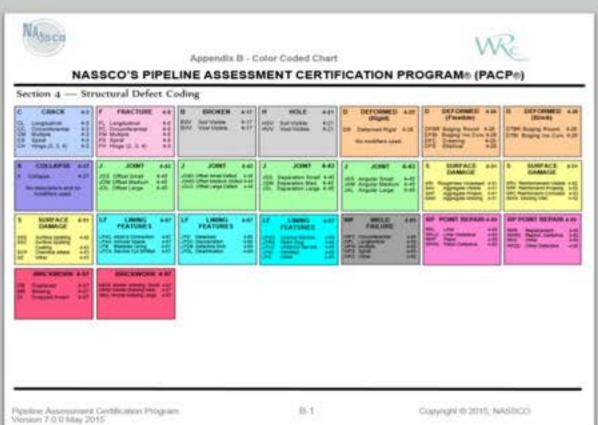
- Ronnie Flannery
 - Directeur général, Aqua Data inc.
 - Responsable comité Ceriu/NASSCO et représentant CERIU au NASSCO

- NASSCOS LARGEST COMMITTEE
- GROUP OF APPROX. 95 VOLUNTEERS MADE UP OF CITY EMPLOYEES, ENGINEERING FIRMS, CONTRACTORS, NASSCO TRAINERS, SUPPLIERS
- OUR MISSION IS TO IMPROVE ON CODING AND PROCEDURES AS IT RELATES TO INFRASTRUCTURE ASSESSMENT OF:
 - SEWERS
 - STORM WATER PIPES
 - MANHOLES
 - SERVICE LATERALS
 - PERFORATED PIPE/UNDERDRAINS
 - AND NOW POTABLE WATER MAINS/PRESSURE PIPES!



- 1. PACP/LACP/MACP Background
- 2. NASSCO Quality Control Guidelines
- 3. PACP/MACP/LACP Version 8
 - a) Coding Improvements PACP/MACP/LACP
 - b) Stormwater Code updates
 - c) New Pressure Pipe Codes
 - d) Perforated Pipe Codes
- 4. Asset management courses
 - a) PACP for Asset Management Evaluating Condition Grades
 - b) PACP for Asset Management Assessing Risk


- National voluntary standard often referenced in regulatory orders as the condition assessment standard
- Recommended in Canada and required in Québec
- Adapted from WRc for North America in 2002
 - MACP in 2006
 - LACP in 2010
- Codes updated periodically with last update (Version 7) in May 2015
- WRc released ownership of PACP to NASSCO in 2023



PACP is a Language

Sample Output Report

O&M Inde Structural Overall Ind	Index: 2.	00 O&M Quick: 50 Structural Quick: 71 Overall Quick:	3323 4133	OBM Rating: Structural Rating: Overall Rating:	15.00 19.00
.0	AMH	Manhole		0	NA
.0	MWL	Miscellaneous Water Le	vel	26	NA
.0	SAV(S01)	Surface Damage Aggreg	rate Visible	31	52
13.4	LFD(S02)	Lining Feature Detached	i e	81	5.3
14.5	SAV(F01)	Surface Damage Aggreg	pate Visible	98	52
30.0	LFD(F02)	Lining Feature Detached	1	129	53
175.7	MGO	Miscellaneous General (Observation	341	NA
369.1	IT	Line Left		663	M 4
404.2	MSA	Miscellaneous Survey Al	bandoned	1033	NA.

Grading System Details for Gravity and Pressure Assets

- 5 Most significant defect grade
- 4 Significant defect grade
- 3 Moderate defect grade
- 2 Minor to moderate defect grade
- 1 Minor defect grade

2. NASSCO Quality Control (QC) Guidelines

Purpose:

- Evaluation of a PACP-certified individual
- Evaluation of a product submission

GUIDELINES FOR QUALITY CONTROL (QC) OF

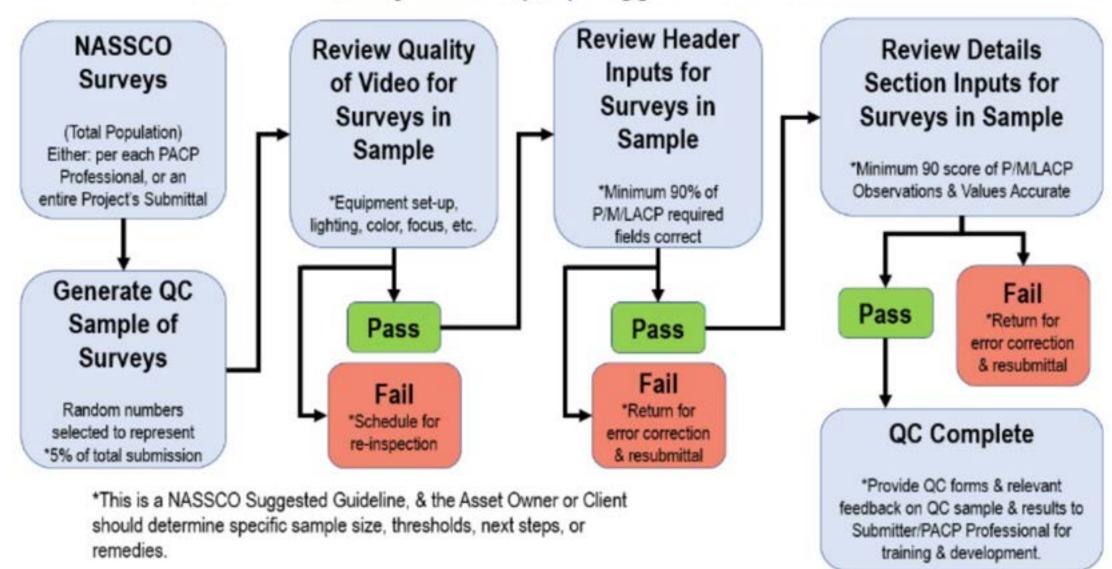
NASSCO's PACP™, LACP™ and MACP™ Surveys

April 2022

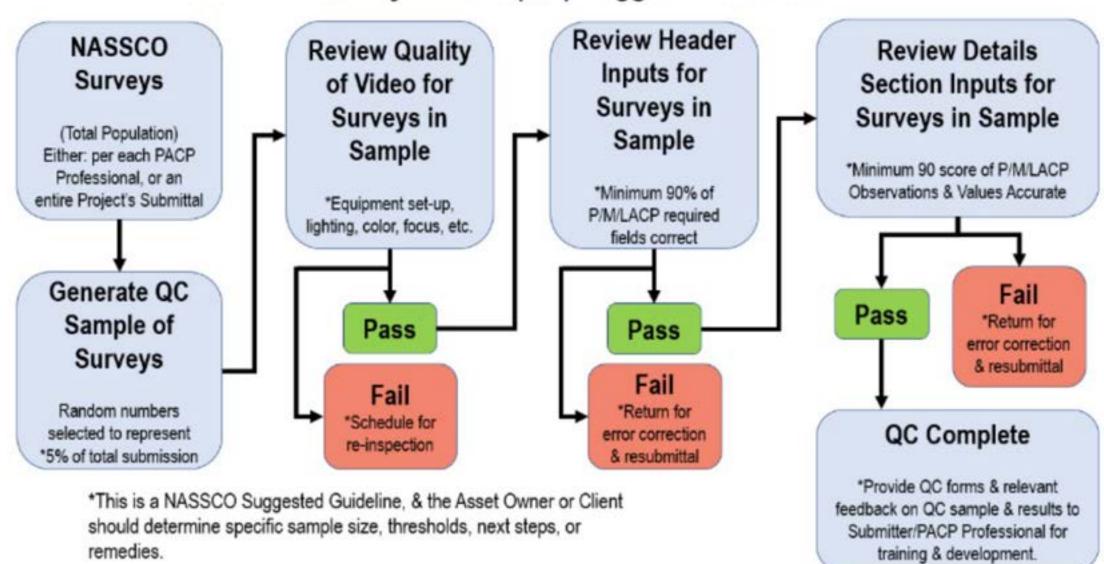
Thanks to the following NASSCO Infrastructure Condition Assessment Committee members for the development of these Guidelines:

Michelle Beason, P.E.
James Burn
Edward Carpenetti
Christopher Garrett, P.E.
Michael Kerr
Christopher Mitchell
Tanya Stephens
Eric Sullivan
Jerry Weimer

1. Visibility during inspection


- a. Provide an unobstructed (perspective) view of the entire pipe, including removal of obstructions, clean camera lens, minimal fogging, and sufficient lighting.
- 2. Equipment set-up and appropriate cable calibration, such as beginning inspections at the interface of the pipe and access point wall (0.0 ft/m).
- 3. NASSCO PACP camera speed limitation.

Inspection videos that do not meet the standards outlines above are to be rejected and the QC process need not continue. The QC processes described herein assume image and inspection quality meet these minimum requirements.


NASSCO Quality Control (QC) Suggested Process

NASSCO Quality Control (QC) Suggested Process

• It is NASSCO's suggestion that the accuracy of the Header records meet or exceed 90%, as most of the field contents are based upon quantitative observations, known asset identifiers, and other field-verified facts.

(Error count / number of fields checked) * 100 = percentage error

100 - error percentage = accuracy percentage

Example (2 errors/32 fields checked) * 100 = 6.25%

100 - 6.25 = 93.75% accuracy level

- NASSCO suggests a minimum passing threshold of 90 points which would allow for 2 large errors.
- Survey details start with 100 points. Scores are deducted based on the following:

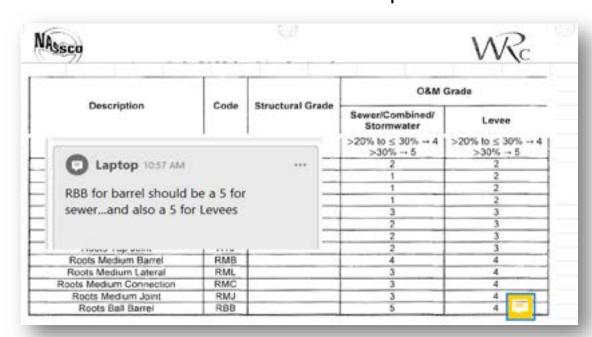
Large Error	-5 points
Medium Error	-3 points
Small Error	-1 points

- Similar to PACP Recommendations
 - NASSCO recommends a minimum 5% sample size
 - Review quality of video/photos/3D model
 - Review quality of MACP inspection forms
 - Header
 - Component Observation Form
 - Details Form

Download complete guideline at

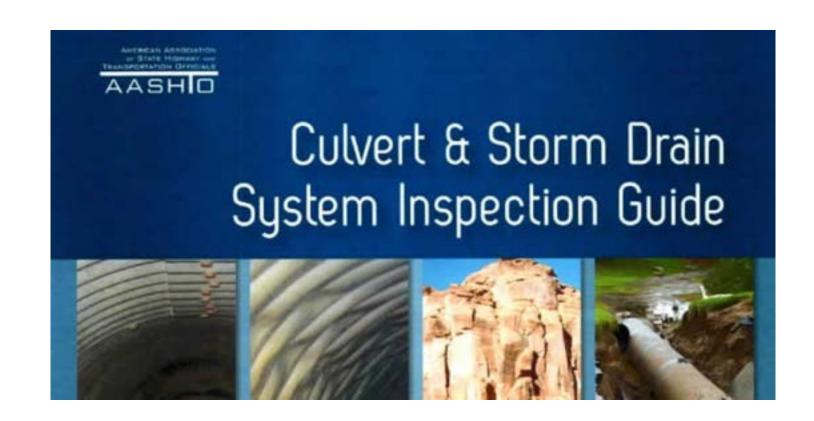
https://nassco.org/resources/nassco-specification-guidelines/

- Version 7 was released in May 2015
- Code comments and suggested changes have been compiled since the release of Version 7.
- From November 2020 through May 2021, the IAC Version 8 workgroup reviewed all comments and code updates.
- Release of Version 8 is planned for January 2024.



NOTABLE CHANGES:

- 1. Reorganizing the manual and training materials so that LACP follows after PACP, with MACP last.
- 2. Updated examples and photos in the manual.
- 3. Coding of defects in new pipe vs. existing pipe.
- 4. Additional surface damage codes added for those other than concrete.
- 5. Condition Grade Scores were reviewed and updated.



6. Reviewed the 2020 AASHTO Stormwater guideline to ensure our codes meet their recommendations

We had a lot of lively discussions

T-lock question: should it be coded as precast? Or RCP Lined? Or ZZZ lined, type
plastic? Put T-lock in the remarks? MAYBE CALL IT PRE-LINED, OR PRECAST LINED, OR
FACTORY LINED, RCP FACTORY LINED??

- CSP / CMP Jointing systems
 - Bolts, yielding, <u>loose</u> or missing
 - Bolt holes, deformation of hole through bolt shear (cracking / splitting noted)

ADD A BOLTS MISSING CODE. BTL, AND BTM. ANY CODE ENTERED IS A 1, OPTIONAL PERCENTAGE AND MANDATORY CLOCK 'FROM' POSITION, 'TO' POSITION IS OPTIONAL. IF CONTINUOUS, IT GETS A 3.

7. New Pressure Pipe Codes

- Used same PACP codes
- Added new defect codes
- Added new access point and material types

NEW PRESSURE PIPE DEFECT CODES ADDED

Code Expanded	DESCRIPTION	SUGGESTED NEW CODE	SUGGESTED SCORE
Leak	A point of the pipline where product is leaving the pipeline in a manner not intended or designed. Detected acoustically or by other sensors.	LK	5
Leak in Pipe Barrel	A leak with a location that is in the pipe barrel, as opposed to at a joint or feature.	LKB	5
Leak at a Pipeline Feature	A leak co-located with a pipeline feature (Offtake??, valve, ARV, etc.)	LKZ	5
Leak on a joint	A leak with a location that corresponds to a joint	LKJ	5
Transient Air	A volume of air (such as bubbles) which is moving through the pipeline	MTA	2
Turbidity	Cloudiness or haziness of a fluid caused by large numbers of tiny particles that are generally invisible during an internal inspection (similar to smoke in air). The measurement of turbidity is a comon test and one parameter used to classify general water quality.	MT	3

^{*}Partial List

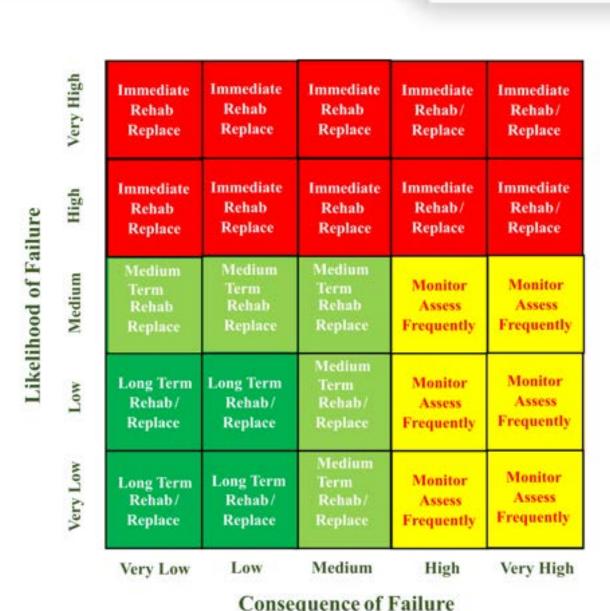
NEW PRESSURE PIPE ACCESS POINTS & MATERIALS

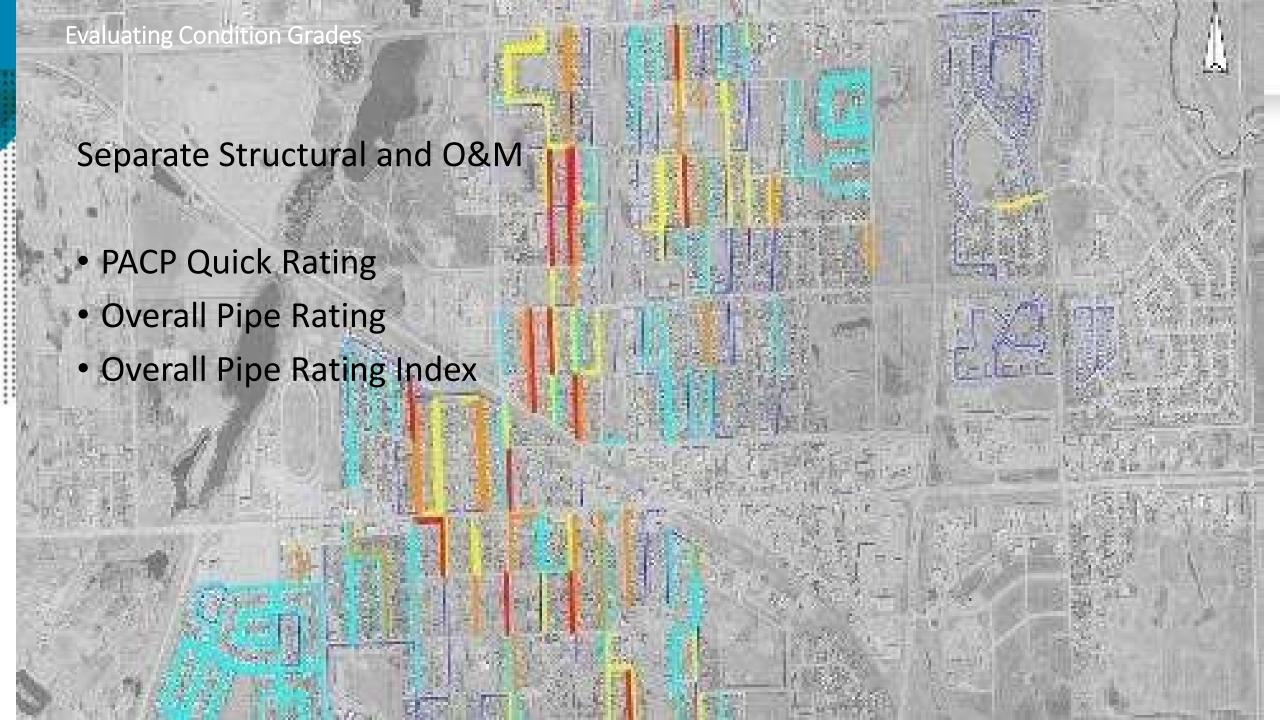
ADDED

Access Points	PACP CODE
Gate Valve	AVG
Ball Valve	AVB
Blind Flange	AEP
Hydrant	AVH
Plug	AVP
Butterfly Valve	AVBF
NPT Fitting	ANPT
Corporation Stop	ACS
Open Channel	AOPN
Valve Intake	VI

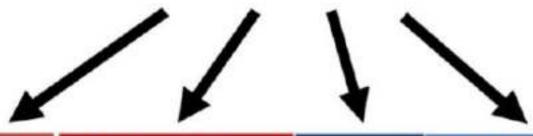
Pressure Pipe Material List	PACP
Asbestos Cement Pipe (ACP)	ACP
Bar-Wrapped Concrete Cylinder Pipe (BWP or BWCCP)	
Cast Iron Pipe (CIP)/Pit Cast	CAS
Cast Iron Pipe (CIP)/Spun Cast	CAS
Cast Iron Pipe (CIP) – Lined/Cement	CAS
Cast Iron Pipe (CIP) – Lined/Bituminous	CAS
Cast Iron Pipe (CIP) – Unlined/Pit Cast	CAS
Cast Iron Pipe (CIP) – Unlined/Spun Cast	CAS
Copper Pipe (CP)	
Cross-Linked Polyethylene Pipe (PEX)	PE
Ductile Iron Pipe (DIP) – Unlined	DIP
Ouctile Iron Pipe (DIP) – Lined /Cement	DIP
Ductile Iron Pipe (DIP) – Lined/Epoxy	DIP
Ductile Iron Pipe (DIP) – Lined/Bituminous	DIP
Galvanized Steep Pipe (GSP)	SP
Gray Iron Pipe (GIP)	CAS
High Density Polyethylene Pipe (HDPE)	PE
olyethylene Pipe (PE)	PE
olyvinyl Chloride Pipe (PVC)	PVC
restressed Concrete Cylinder Pipe (PCCP)	PCCP
Riveted Pipe]	RP

NEW PERFORATED PIPE SCORES


Appendix C - PACP Condition Grading System


	Code	Structural Grade			O&M Grade
Description		Sewer/Combined/ Stormwater	Levee/Dam	Perforated Storm	
COLLAPSE	8				
Collapse	X	5	5	5	
JOINT					
Joint Offset Small (Displaced)	JOS	1	4	1	
Joint Offset Small Defective	JOSD	2	5	5	
Joint Offset Medium	JOM	4	5	3	
Joint Offset Medium Defective	JOMD	4	5	5	4
Joint Offset Large	JOL	5	5	5	
Joint Offset Large Defective	JOLD	5	5	5	5
Joint Separated Small (Open)	JSS	1	5	1	
Joint Separated Medium	JSM	4	5	3	
Joint Separated Large	JSL	5	5	5	
Joint Angular Small	JAS	1	4	1	
Joint Angular Medium	JAM	3	5	3	
Joint Angular Large	JAL	5	5	5	

- Evaluating Condition Grades
- Assessing Risk



Highest severity grade

Total number of occurrences of highest severity grade

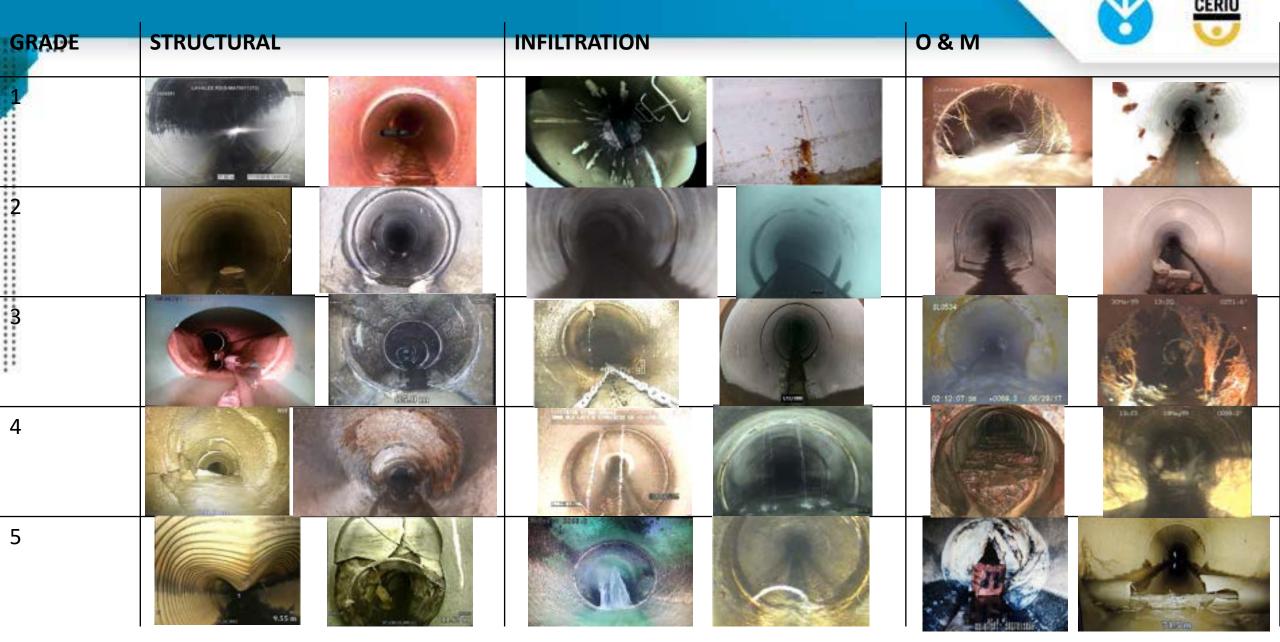
Next highest severity grade

Total number of occurrences of second highest severity grade

10 to 14 =A

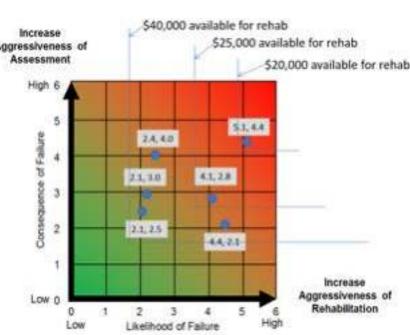
15 to 19 = B

20 to 24 = C

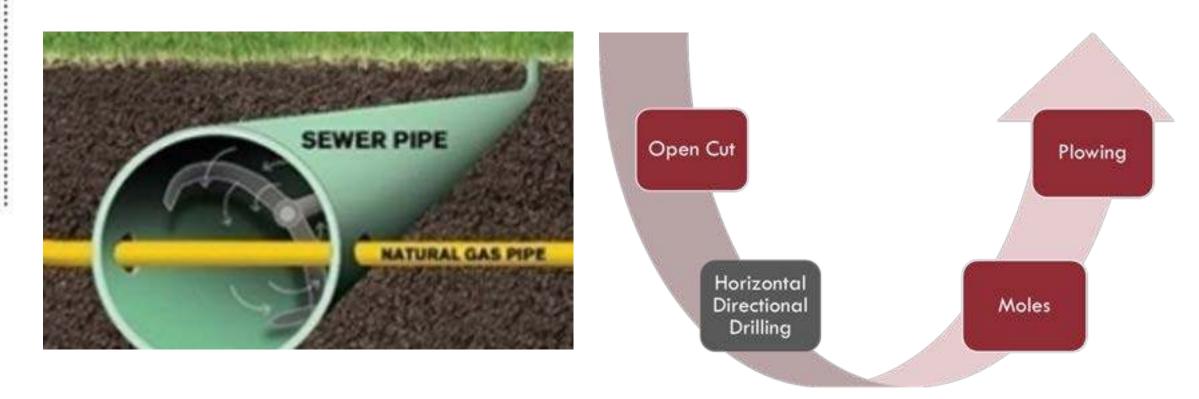

Etc.

10 to 14 =A

15 to 19 = B


20 to 24 = C

Etc.


- Appendix D provides a basic introduction of how to use PACP in conjunction with other factors to assess risk.
- Target Audience: Utility Managers and Engineers or anyone interested in learning more
- Content:
- Using assessment results combined with other tools to better manage assets
- Guiding predictive maintenance, rehabilitation and/or replacement

Methods for Utility Installation

How Cross Bores Happen

- More utilities are being installed or updated underground
- Limited width to work, due to utility easement size
- Common options to install new utilities are:
 - dig deeper, or
 - Use HDD

SPECIFICATION GUIDELINE

for

Cross Bore Prevention and Detection

Available at NASSCO.ORG

NASSCO CLEANING SPECIFICATION GUIDELINE

Phase 1 Pre-cleaning Inspection. a. The preferred method for Pre-Cleaning Inspection is color CCTV conforming to NASSCO Pipeline Assessment Certification Program (PACP), and for the data to be exported electronically in a PACP certified format. Since this inspection is performed prior to cleaning, it is understood that the video may not provide an "unobstructed view of the entire pipe".

- 1. SAFETY
- 2. DAMAGE
- 3. EFFICIENCY

QUESTIONS?

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY</u>