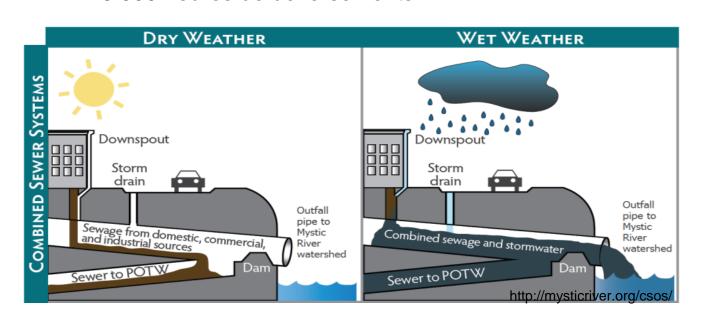


DÉVERSEMENTS ET PRÉCIPITATIONS:Vers une analyse des impacts des changements

climatiques sur les déversements des réseaux d'égouts unitaires

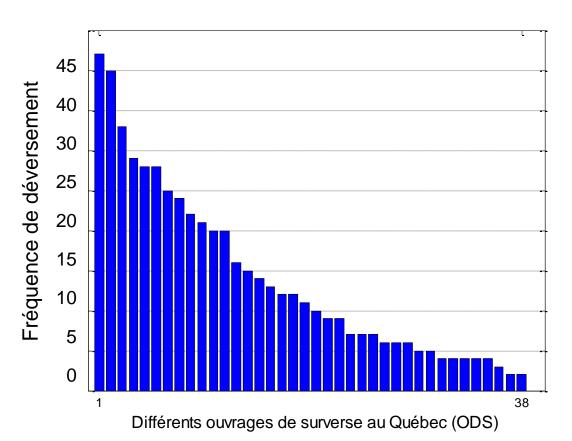
CLAUDINE FORTIER, B.Ing., étudiante à la maîtrise ALAIN MAILHOT, Ph.D.

8 novembre 2011



Situation actuelle au Québec en matière de déversements

- ~800 stations d'assainissement des eaux usées
- ~4500 ouvrages de surverse (ODS)
- ~13 000 déversements enregistrés en 2009
- ~73 000 heures de déversements


Lors d'un déversement...

Déclaration obligatoire

Situation actuelle au Québec en matière de déversements

Statistiques sur les déversements causés par la pluie au Québec

- Fréquence des déversements estivaux variant entre 0 et 60 fois par été par ODS
- Nombre moyen de déversements par ouvrage par année : 6,32
- Durée moyenne : 5,66 heures

Enjeux

En 2009...

26% des stations n'ont pas
respecté leur exigence de rejets
fixée par le MDDEP.

Recherche de solutions à la problématique des déversements des réseaux unitaires (DRU)

Considérer...

Changements climatiques

- Modifie patron de pluie
- Impact sur la fréquence, la durée et le volume des DRU

Réglementation

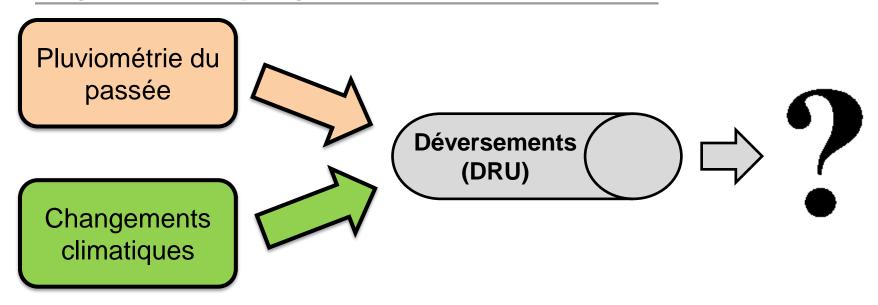
- Resserrement des exigences de rejets assujetties à chaque station
- Atteindre l'idéal, i.e aucun déversement

Impacts

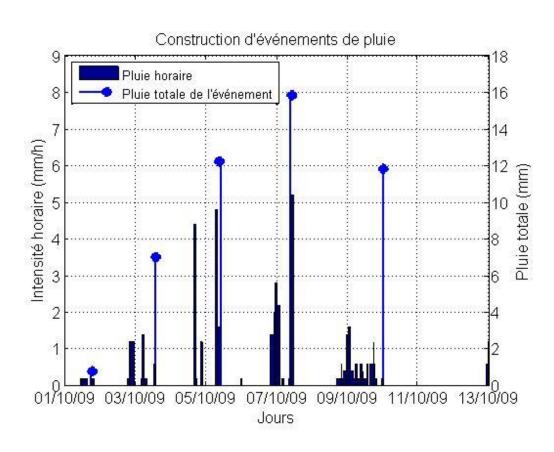
Biologiques et chimiques

- 1) Microorganismes pathogènes
 - Santé humaine
- 2) Nutriments (N,P,MO,MeS)
 - Stimule la croissance des algues et/ou composés toxiques

Physiques


1) Érosion des cours d'eau

Objectifs du projet


- 1) Dresser un portrait des déversements pour certaines stations du Québec
- 2) Faire un lien entre la pluviométrie du passé et la probabilité de DRU
- 3) Utiliser des modèles climatiques pour évaluer la fréquence des DRU en climat futur
- 4) Évaluer qualitativement l'impact des déversements sur les milieux récepteurs

Données disponibles

Pluie - Pluviomètres du MDDEP

- Données horaires
- > Formation d'événements
 - a) 10h de temps sec
 - b) $H_{min} = 0.5 mm$
- Pour chaque événement…
 - 1. Date et heure
 - 2. Hauteur totale (mm)
 - 3. Durée (h)
 - 4. Intensité maximale (mm/h)
 - 5. Intensité moyenne (mm/h)
 - 6. Temps sec antérieur (h)

Données disponibles

Déversements - Base de données du MAMROT

Suivi des ouvrages municipaux d'assainissement des eaux (SOMAE)

- Un formulaire mensuel pour chaque ouvrage de surverse
 - Date du déversement
 - 2. Durée (si présence d'enregistreur)

Exemple de la base de données sur les déversements journaliers du MAMROT

Thetford Mines ODS - TP de l'entrée			
Date	Durée (h)		
5/10/2009	0		
6/10/2009	3,55		
7/10/2009	0		
8/10/2009	2,1		

Méthodologie

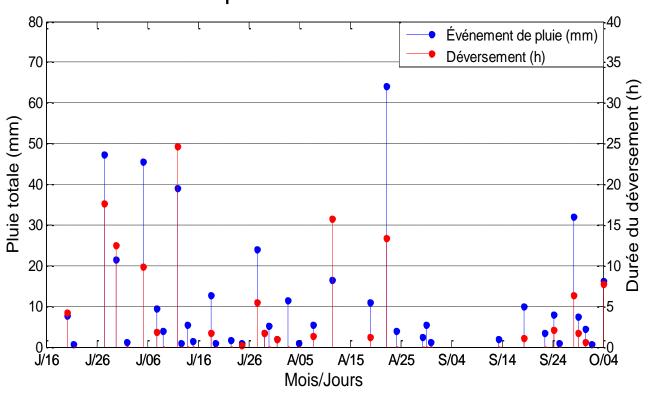
Associer chaque déversement avec un événement de pluie

Événement de pluie

# Événement	Date	Hauteur pluie (mm)	Durée de la pluie (h)
#1			

Déversements

Date	Durée du déversement (h)


Facteurs utilisés dans l'algorithme d'association :

- 1. La date
- 2. La hauteur de l'événement de pluie

Exemple de cas

Événements de pluie et déversements associés

ODS : TP de l'entrée de la station

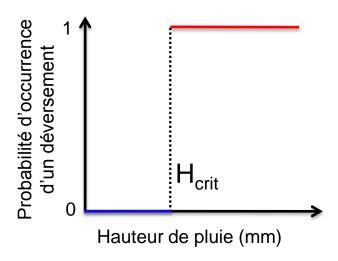
Thetford Mines, Black Lake,

Période 2008 et 2009

Exemple de cas

L'ouvrage de surverse TP de l'entrée de la station Thetford Mines, Black Lake, Période 2008 et 2009

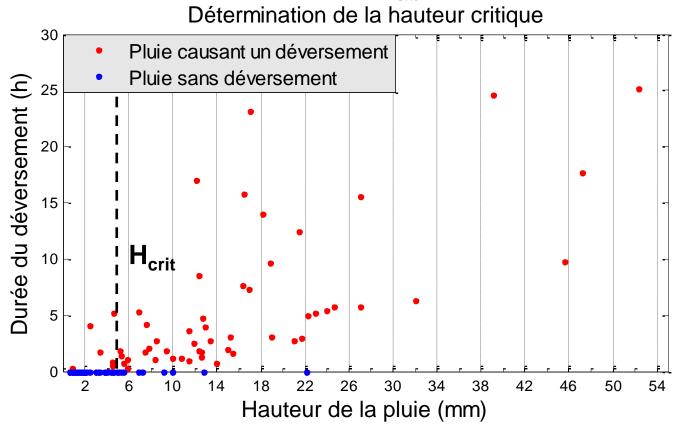
> Si le pluviomètre enregistre de la pluie, est-ce qu'il pleut près de l'ODS aussi?



Modèle conceptuel

En théorie

Hauteur de pluie critique à partir de laquelle il y a déversement



Résultats

1. NOMBRE DE DÉVERSEMENTS

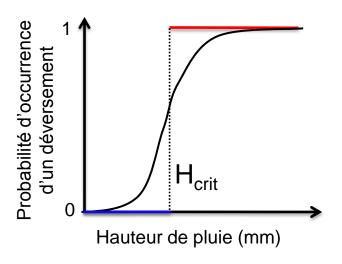
- a) Établir un **H**_{crit} (mm) seuil pour un ODS
- b) Compter le nombre d'événements H > H_{crit}

Résultats

1. NOMBRE DE DÉVERSEMENTS

- a) Établir un H_{crit} (mm) seuil pour un ODS
- b) Compter le nombre d'événements H > H_{crit} = Déversement

Déversements prédits par la méthode de la hauteur critique pour différents ODS en 2008 et 2009


Ouvrage de surverse (ODS)	Hauteur critique H _{crit} (mm)	Nb de pluie H > H _{crit} 2008-2009	Nb réel de déversements 2008-2009	% erreur
Thetford-Mines -1	5.1	$\frac{61}{109}$	59 109	2%

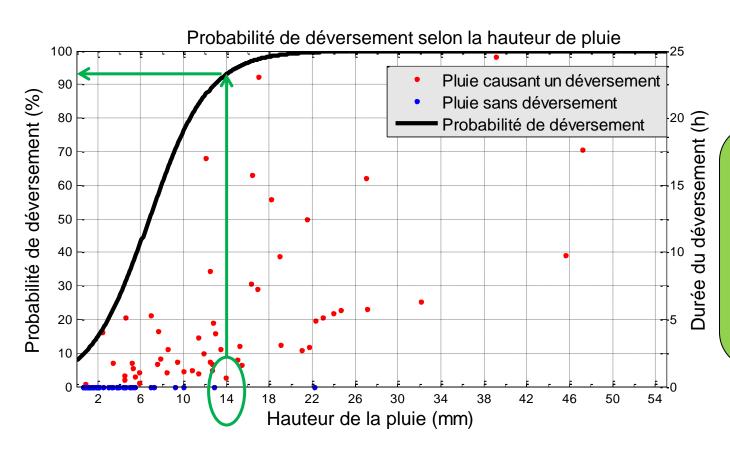
Modèle conceptuel

En théorie

Hauteur de pluie critique à partir de laquelle il y a déversement

En réalité

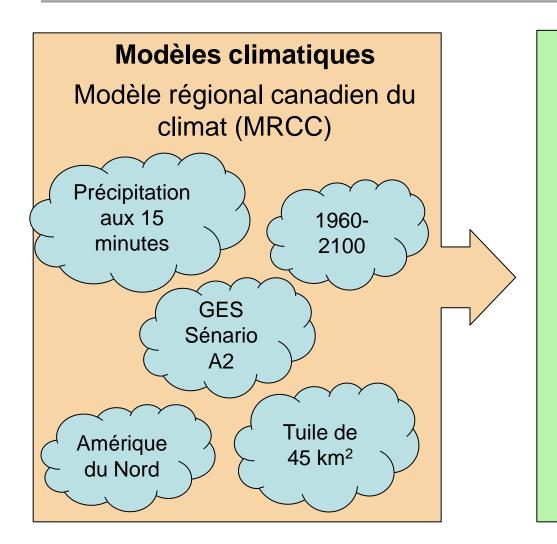
Incertitudes sur...


- Les données de pluie
- ➤ La distribution spatiale de la pluie
- La configuration des réseaux
- La capacité d'infiltration
- > etc...

Bref, il n'existe pas de seuil unique pour lequel il y a automatiquement un déversement

Probabilité de déversement

→ Évaluer la probabilité qu'une pluie cause un déversement


Exemple

S'il pleut

14 mm,
il y a 92%
que cet ODS
déverse

Changements climatiques

Stratégie

Former des événements de pluie

Probabilité d'occurrence

Quantifier l'accroissement du nombre de déversements

Conclusion

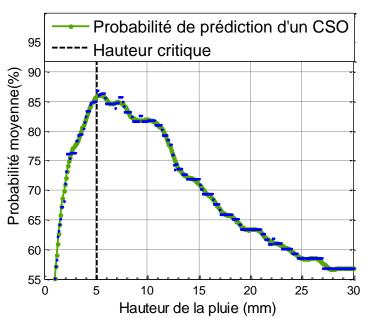
À partir des données météorologiques et des données sur les déversements...

- 1) Associer un déversement à une pluie et ses caractéristiques
- 2) Définir une probabilité de déversement
- 3) Évaluer l'impact des changements climatiques sur les déversements

Application au Québec

- Concevoir des mesures d'adaptation aux déversements
- Gestion des infrastructures
- Assurer une efficacité à long terme face aux changements climatiques

Remerciements


- Alain Roseberry, ing., D.A., chef d'équipe, Direction des infrastructures, MAMROT
- Joao Moreira, ing., PhD., Direction des infrastructures, MAMROT
- Guillaume Talbot, M.Sc., INRS-ETE
- Julie Drapeau et Catherine Savard, Direction du suivi de l'état à l'environnement, MDDEP
- Carl Touzin, M.Env.
- Conseil de recherche en science naturelle et en génie du Canada (CRSNG)
- OURANOS

Merci de votre attention

Questions?

Probabilité d'identifier correctement si un événement de pluie engendre un déversement

Résultats

1) Estimer le nombre de déversements à partir d'une série de données de pluie

$$\checkmark$$
 H > H_{crit}

- 2) Évaluer la probabilité pour une pluie donnée de provoquer un déversement
 - > Exemple:
 - \circ 5 mm \rightarrow 40%
 - \circ 10 mm \rightarrow 75%
 - o 20 mm → 95%

