CERIU - INFRA 2011

Évolution technologique en conception de ponts

Par Gérard Desgagné, ing., M. Sc.
Chef du Service de la conception des structures
Direction des structures

Novembre 2011

□ Australie	1,8 m

□ Europe	2.0 m
- Luiope	۷,0 ۱۱۱

■ Norvège	2.5 m
- 11011090	– ,0 111

□ Canada	3,0 m
	- , -

- ☐ Suisse et Belgique 5,0 m
- ☐ États-Unis et Afrique du Sud 6,0 m
- ☐ Espagne et Italie 10,0 m
- □ Japon

15,0 m

Évolution des chargements de conception

Année d'introduction	Chargement	
Avant 1910	chariot	
1910	engin à vapeur	10 pi
1930	H10 H15 H20	2 tonnes 8 tonnes (impérial) 3 tonnes 12 tonnes 4 tonnes 16 tonnes
1944	H20-S16 H15-S12	4 tonnes 16 tonnes (impérial) 16 tonnes 3 tonnes 12 tonnes (impérial) 12 tonnes
1971	H25-S20	5 tonnes 20 tonnes (impérial) 20 tonnes
1980	MS250	5.1 t 20.4 t (métrique) 20,4 t
1989	QS660	6.1 t 24.4 t (métrique) 20.4 t 16.3 t
2002	CL625	5.1 t 25.5 t (métrique) 17.8 t 15.3 t

Durée de vie de conception

☐ Canada 75 ans

☐ États-Unis 75 ans

☐ Europe 100 ans

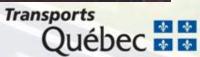
☐ Japon 100 ans

☐ Australie 100 ans

☐ Québec ⇒ 100 ans (durabilité)

Ponts en bois

Les premiers ponts furent construits en bois, matériau disponible sur place en grande quantité


Fin du XVIIIe siècle

Portée ≈ 10 m

Pont en bois

Ponts couverts

Pour obtenir de plus longues portées, on fit appel à la technique des ponts en bois à poutres triangulées.

> Début XIX^e siècle vers 1830 Portée 15 à 30 m Pont patrimonial

Pont couvert

Les ponts en acier

La construction des ponts en acier coïncide avec l'avènement du chemin de fer

Fin XIX^e siècle vers 1880 Portée de 20 à 100 m

Ponts à poutres triangulées Ponts à poutres à âme pleine

Ponts en acier

□ Ponts à poutres triangulées

☐ Ponts à poutres triangulées à tablier inférieur

- Système Warren (petite travée) 1910-1930
- Avec contreventement supérieur (grande travée)

Pont de type Pony-Warren

Pont à poutres triangulées à tablier inférieur

Transports
Québec

□ Pont à poutres triangulées à tablier supérieur

☐ Lorsque le profil longitudinal de la route surplombe la rivière à un niveau élevé

Pont à poutres triangulées à tablier supérieur

Ponts en acier

□ Pont à poutres triangulées à tablier intermédiaire

□ Lorsque la hauteur libre est limitée et qu'on veut conserver une structure assez basse

Pont à poutres triangulées à tablier intermédiaire

Ponts en acier

□ Ponts à poutres à âme pleine

- Avant 1940:
- Pas de laminage
- Pas de fabrication par soudure
- Pont le plus courant

Acier-bois

Portée ≈ 25 m

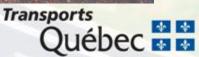
Pont acier-bois

Ponts à poutres à âme pleine en acier

Évolution de 1935 à 1960

Laminage de grosses pièces Assemblage par soudure (1939) Assemblage par boulon à haute résistance (1958)

Longues portées
Travées continues
Poutres courbes
Poutres à hauteur variable
Poutres en forme de caisson
Acier 350AT



Acier allié résistant à la corrosion atmosphérique à résilience améliorée à basses températures

Pont à poutres à âme pleine en acier

Pont à poutres à âme pleine en acier

Pont à poutres caissons

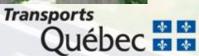
Les ponts en béton

□ La construction des ponts en béton date du début du XX^e siècle

> Ponceaux Portée ≈ 5 m

Ponceau

Ponts en béton


Évolution de 1920 à 1965

- □ Armatures : barres lisses carrées, torsadées ou rondes
- ☐ 1950 : barres crénelées
- 1920 1930 : poutres d'acier enrobées de béton portée ≈ 10 m
- ☐ 1930 1965 : pont à poutres en béton armé portée 8 à 40 m

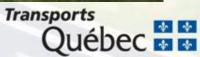
Pont à poutres en béton

Ponts en béton

Portique à dalle épaisse

L'avènement des autoroutes sans intersection à niveau vit la prolifération du tablier à dalle épaisse

Épaisseur de tablier réduite Hauteur de remblai réduite


Portique simple ou continu

À béquilles verticales ou inclinées Avec console aux extrémités

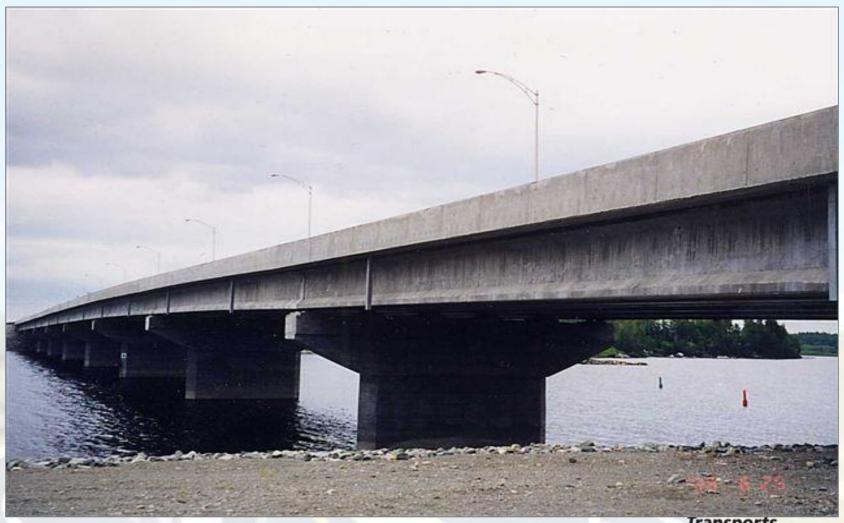
Portique en béton

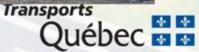
Portique en béton

Ponts en béton précontraint

□ La période de construction d'autoroutes durant les années 1960-1980 vit la prolifération des ponts en béton précontraint

Ponts à poutres préfabriquées
Portée ≈ 40 m
Ponts à poutres coulées en place
Portée > 40 m




Pont à poutres préfabriquées en béton précontraint

Pont à poutres préfabriquées en béton précontraint

Pont à poutres préfabriquées en béton précontraint

Pont à poutres coulées en place en béton précontraint

Pont à poutres coulées en place en béton précontraint

Ponts en béton précontraint

☐ Pont construit par encorbellement1963 à 1983

Portée de 80 à 180 m

- 1963 Rivière aux Mulets à Sainte-Adèle
- 1967 Rivière du Lièvre à Notre-Dame-du-Laus
- 1976 Rivière Saint-Maurice à Grand-Mère
- 1978 Rivière Matapédia à Milnikek
- 1983 Rivière Rimouski à Rimouski
- 1983 Rivière Kinojevis à Kinojevis

Pont construit par encorbellement

Pont en béton

Matériau

Avant 1990: 30 et 35 MPa

avec ajout cimentaire (fumée de silice)

Début 1990 : BHP 50 et 60 MPa

Années 2000 : Ciments ternaires

Fumée de silice Cendres volantes

Laitiers

Ponts en béton

Protection des aciers d'armatures

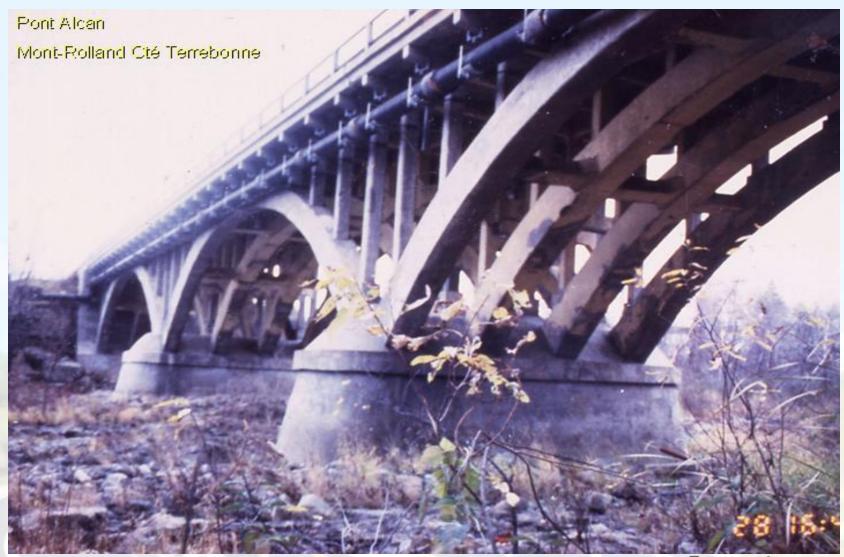
Armature en acier noir

Armature revêtue d'époxy (retirée en 2000)

Armature galvanisée (depuis 1995)

Ponts en arc en acier ou en béton

- Pont en arc à tablier supérieur
- Pont en arc à tablier inférieur


Pont en arc à tablier intermédiaire

Pont en arc à poutre Langer

 \supset

Pont en arc à tablier supérieur

Pont en arc à tablier inférieur

Pont en arc à tablier intermédiaire

Pont en arc à poutre Langer


Transports
Québec

Pont à câbles

Ponts haubanés

Rang	Portée (m)	Pays	Anné
1	1088	Chine	2008
2	1028	Hong Kong	2009
3	890	Japon	1999
4	856	France	1995
1	1		1
32	465	Canada Alex Fraser	1986
			1
88	342	France Millau	2004
?	280	Québec Pont Aut. 25	2011
			Transpor

Pont de Normandie

Viaduc de Millau

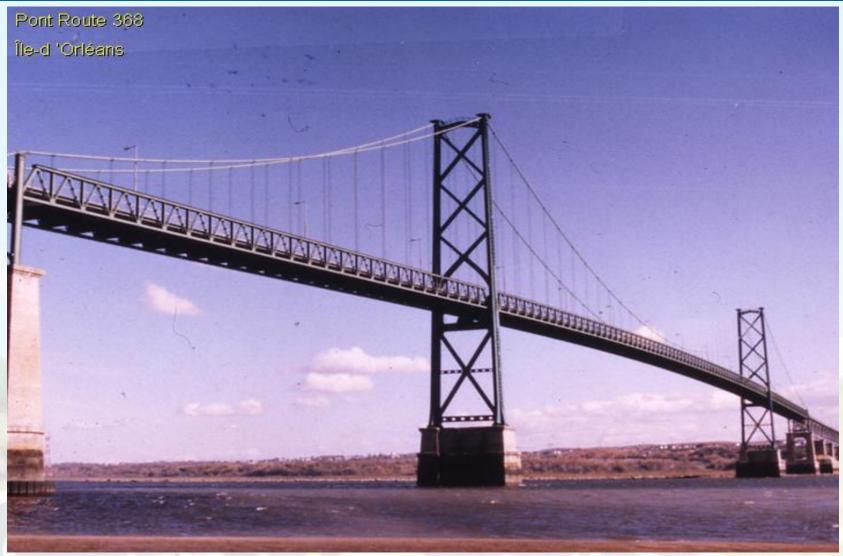
Pont autoroute 25

Pont à câbles

Ponts suspendus

Rang	Portée (m)	Pays	Année
1	1991	Japon	2008
2	1650	Chine	2009
43	668	Québec Pont Pierre Laporte	1970
74	473	Canada Lion's Gate	1938
1		1	1
105	323	Québec Île d'Orléans	1936

Pont Golden Gate



Pont Pierre-Laporte

Pont de l'Île-d'Orléans

