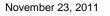

CONGRÈS INFRA 2011

Bringing Sustainability into Road Widening and Rehabilitation Decision-Making

Michael Maher, Toronto, Ontario Jeanette Southwood, Ottawa, Ontario Vaughn Grey, Montréal, Québec

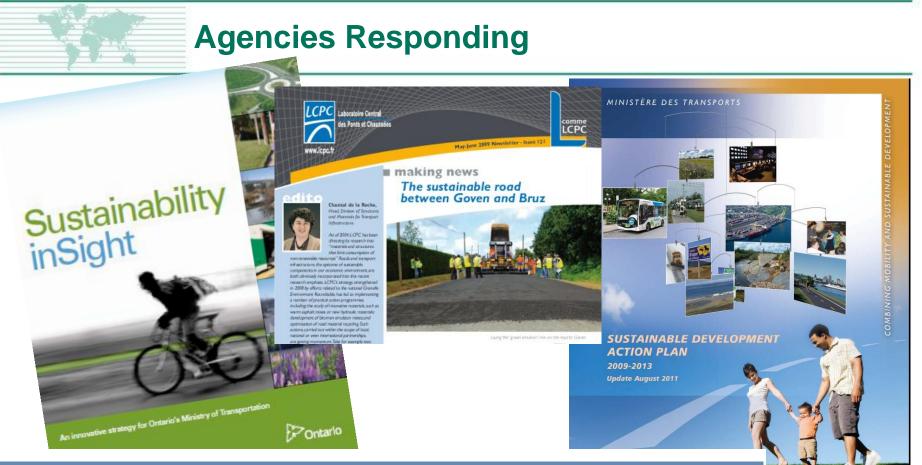

7-9 November 2011

Recognition of the Problem

- LEED-type Approaches
- Overview of Quantitative Sustainability Tool
- Example of Application to Road Rehabilitation Decision-making

Strategies for Sustainable Development

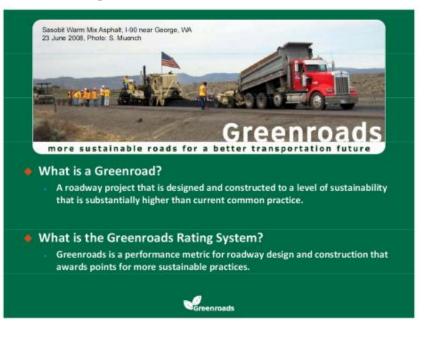
- 1. Climate change and clean energy
- 2. Sustainable transport
- 3. Sustainable consumption and production
- 4. Conservation and management of natural resources
- 5. Public health
- 6. Social inclusion, demography and migration
- 7. Global poverty and global sustainable development challenges



Sustainability on the Roads Agenda

Focus area I Ensure the sustainability of transportation systems for future generations

1# Intervention item: Road infrastructures


Golder

Québec 🔡

GOAL

To provide an assessment of the sustainability of pavement designs and construction for the purpose of promoting greener pavements

In U.S. for road infrastructure >35 Million T of Asphalt/year >48 Million T of concrete/year >Cost: \$65 Billion >Roadway conditions significant factor in 1/3 of accident fatalities >Poor roads cost motorists \$67 Billion/year in vehicle repairs (\$333/motorist) (ASCE, 2009)

Greenroads

Objectives Defines basic roadway sustainability attributes

- Greater participation in roadway sustainability
- Better evaluation of sustainability tradeoffs
- Provide a means for sustainability assessment
- Confer market recognition for sustainability efforts

Greenroads' Scorecard

Greenroads

Point Totals

A = Achieved by this project P = Potientially achievable with low additional effort M = Maximum achievable regardless of cost

Credit Scorecard

Projec	t Requirements (PR)		Possible	
PR-1	Environmental Review Process		Req	
PR-2	Lifecycle Cost Analysis		Req	
PR-3	Lifecycle Inventory		Req	
PR-4	Quality Control Plan		Req	
PR-5	Noise Mitigation Plan		Reg	
PR-6	Waste Management Plan		Req	
PR-7	Pollution Prevention Plan		Reg	
PR-8	Low-Impact Development		Req	
PR-9	Pavement Management System		Reg	
PR-10	Site Maintenance Plan		Req	
PR-11	Educational Outreach		Req	
		Total	11	

Enviro	nment & Water (EW)	Possible	Α	P	M
EW-1	Environmental Management System	2			2
EW-2	Runoff Flow Control	1-3			3
EW-3	Runoff Quality	1-3			3
EW-4	Stormwater Cost Analysis	1		1	1
EW-5	Site Vegetation	1-3	3	3	3
EW-6	Habitat Restoration	3			
EW-7	Ecological Connectivity	1 - 3	3	3	3
EW-8	Light Pollution	3			3
	Tota	21	6	7	18

Acces	s & Equity (AE)	Possible	Α	P	м
AE-1	Safety Audit	1-2			2
AE-2	Intelligent Transportation Systems	2 - 5	3	3	-5
AE-3	Context Sensitive Solutions	5	5	5	5
AE-4	Traffic Emissions Reduction	5	5	5	-5
AE-5	Pedestrian Access	1 - 2	1	1	2
AE-6	Bicycle Access	1 - 2	1	1	2
AE-7	Transit & HOV Access	1-5			
AE-8	Scenic Views	2	2	2	2
AE-9	Cultural Outreach	1 - 2		1	2
	Tot	tal 30	17	18	25

Certification Levels

C = Certified (All PR's Met + At Least 32 Points) S = Silver (All PR's Met + At Least 43 Points) G = Gold (All PR's Met + At Least 54 Points) E = Evergreen (All PR's Met + At Least 64 Points)

Const	Α	Ρ	м			
CA-1	Quality Management System		2			2
CA-2	Environmental Training		1		1	1
CA-3	Site Recycling Plan		1		1	1
CA-4	Fossil Fuel Reduction	1	1 - 2			2
CA-5	Equipment Emission Reduction	1	1 - 2			2
CA-6	Paving Emission Reduction		1	1	1	1
CA-7	Water Use Tracking		2		2	2
CA-8	Contractor Warranty		3			3
	1	Total	14	1	5	14

Mater	ials & Resources (MR)	Po	ssible	Α	Ρ	м
MR-1	Lifecycle Assessment		2			2
MR-2	Pavement Reuse	4	- 5	4	4	5
MR-3	Earthwork Balance		1			
MR-4	Recycled Materials	1	- 5	2	5	5
MR-5	Regional Materials	1	- 5	4	5	5
MR-6	Energy Efficiency		5			
		Total	23	10	14	17

Paver	nent Technologies (PT)	Possible	Α	Ρ	м
PT-1	Long-Life Pavement	5	5	5	5
PT-2	Permeable Pavement	3			
PT-3	Warm Mix Asphalt	3		3	3
PT-4	Cool Pavement	5			5
PT-5	Quiet Pavement	2-3			
PT-6	Pavement Performance Tracking	1			1
	Total	20	5	8	14

Custom Credit (CC)	Po	ssible	Α	Ρ	м
CC-1/2 Custom Credit Title	1	- 5	5	5	5
CC-3/4 Custom Credit Title	1	- 5	2	2	5
	Total	10	7	7	10
A	111 PR Met?		No	Yes	Yes
Gree	nroads Total	108	46	59	98
Certi	fication Level			G	E

Semi-quantitative Approach

Paven	nent Technologies (PT)	Possible	А	Ρ	м
PT-1	Long-Life Pavement	5	5	5	5
PT-2	Permeable Pavement	3			
PT-3	Warm Mix Asphalt	3		3	3
PT-4	Cool Pavement	5			5
PT-5	Quiet Pavement	2 - 3			
PT-6	Pavement Performance Tracking	1			1
	Total	20	5	8	14

Ontario GreenPave

GREENPAVE

GREEN PAVEMENT DESIGN RATING SYSTEM

REFERENCE GUIDE

Ministry of Transportation

 Image: Contario
 Ministry of Transportation

 Image: Contario
 Image: Contario

 Image: Contario
 Im

GreenPave Rating Summary Sheet

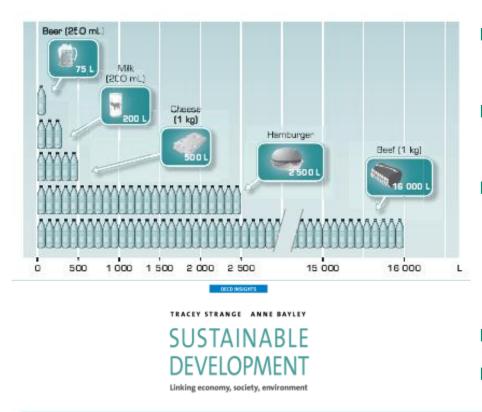
Maximum		D	Assigned Point							
Point		GreenPave Category	Option 1	Option 2	Option 3	Option 4	Option 5	Option 6	Option 7	Option 8
9	Pavement Tecl	nologies	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	Credit PT - 1	Long-Life Pavement	0.0	0.0	0.0	0.0				
2	Credit PT - 2	Permeable Pavements	0.0	0.0	0.0	0.0				
2	Credit PT - 3	Noise Mitigation	0.0	0.0	0.0	0.0				
2	Credit PT - 4	Cool Pavements	0.0	0.0	0.0	0.0				
			1. S. S. S.	1.1.1.1				÷	•	
11	Materials & Re	sources	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Credit MR - 1	Recycled Content								
2	Credit MR - 2	Undisturbed Pavement Structure								
2	Credit MR - 3	Local Materials								
2	Credit MR - 4	Construction Quaility								
									•	
8	Energy & Atmo	sphere	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	Credit EA - 1	Reduce Energy Consumption								
3	Credit EA - 2	GHG Emission Reduction								
	Credit EA - 3	Pavement Smoothness								
	Credit EA - 4	Pollution Reduction								
	-									
4	Innovation & D	esign Process	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	Credit I - 1	Innovation in Design								
2	Credit I - 2	Exemplary Process								
32		Total GreenPave Points:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Green Pave Rating:	NOT CERTIFIED	NOT CERTIFIED	NOT CERTIFIED	NOT CERTIFIED				

Bronze X-XX points Silver XX-XX points Gold XX-XX points Trillium XX-XX points

GHG Emissions Reduction

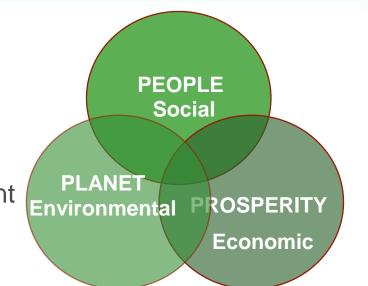
	Surface/Binder Layers	Granular Layers
1 point	 Use of Warm Mix Asphalt Technology Asphalt Layer with at 5-15% RAP, by mass Concrete layer with 16-25% SCM, by mass of the total cementing material in concrete 	 Granular with 10%-49% RM, by mass
2 points	 Asphalt Layer with 16-40% RAP, by mass HIR 	 Granular with at least 50% RM, by mass In-Place Processing (e.g. FDR, Rubblizing, Crack and Seat)
3 points	CIR CIREAM	FDR-EAS

Why is a new approach needed?



Use of Sustainability Metrics

What gets measured gets done!



- Learning
 - Benchmark internally
 - Evaluate alternatives
- Decision-making
 - Identify improvement options
- Accountability
 - Track performance
- Demonstration
 - Build the business case
 - Promote 'sustainable' initiatives
- Support change
- Report to Stakeholders

Simple Tool for Sustainability

- Need for analytical framework to evaluate sustainability options
- Impartial, balanced and comprehensive
- Enhance the understanding of SD issues
- Support proactive stakeholder engagement
- Assist in managing risks
- Lead to better operational practices
 - Improve "Triple Bottom Line"
 Achieving sustainable financial performance while promoting environmental integrity and social equity

GoldSET : Sustainability Evaluation Tool

Project Definition

 Current condition
 Design criteria
 Minimum performance objectives

Technology Identification and Evaluation

• Fatal flaw analysis:

- Objectives
- Cost
- Duration
- Technical
- Performance

Indicators

- Standards & Best Practices
- Agency policies
- Legal Requirements

Environmental •Natural Resources

•Ecological Integrity •Energy use •Waste generation

Social •Health & Safety •Quality of life •Aesthetics

•Capital cost

•Life cycle cost •Impacts on local economy

Select Acceptable Options

Meet all technical design criteria

Scoring

Quantification of indicators: • Specific to client requirements

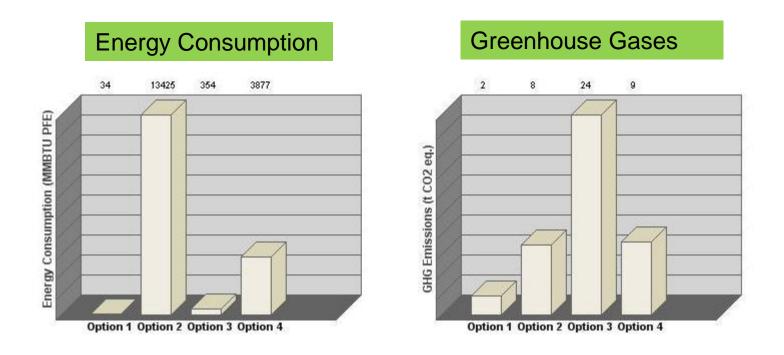
Evaluation of Options based on "Triple Bottom Line"

Structured system for ranking options

Interpretation & Reporting

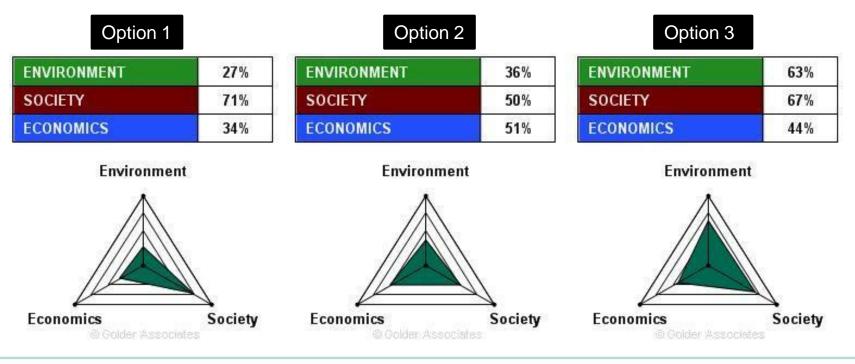
Rank Options
•OPTION A
•OPTION B
•OPTION C
•OPTION D

Recommendations to support decision making:

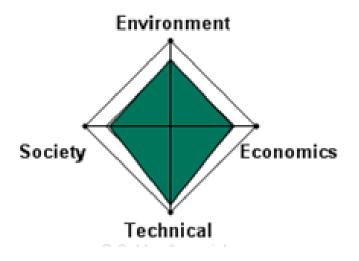

- Sustainable
- Consistent
- Objective
- Transparent
- Optimized

Automated reporting (web version)

Quantitative Indicators


- Need robust and appropriate quantitative indicators
- Quantitative indicators, such as \$, t CO₂, KWh, water usage, etc. can be compared to derive relative scores
- Analysis can be customized to fit desired level of uncertainty

Analysis Output in Graphical Form


- The best approach from a sustainability standpoint is based on:
 - The bigger, most balanced triangle
 - Highest performance in each dimension
 - Balanced performance between all dimensions

Technical Dimension Output

ENVIRONMENT	78%
SOCIETY	70%
ECONOMICS	72%
TECHNICAL	91%

- A sustainability assessment does NOT replace technical feasibility
- Only technically acceptable options should be considered
- A fourth dimension can be added to address technological aspects

Uncertainty

A Tiered Approach with GoldSET©

Data requirements

Tier 1

- Preliminary evaluation
- Qualitative criteria
- Indirect stakeholder involvement

Tier 2

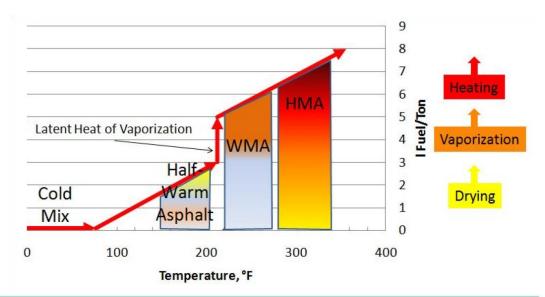
- Semi-quantitative evaluation
- First order of magnitude estimations
- Stakeholder consultations

Tier 3

- Detailed evaluation
- Quantification of key criteria based on modeling, life-cycle / cost-benefits analyses
- Extensive stakeholder consultations

Current Drivers

- Reduce use of natural resources and non-renewables
- Greater **re-use** of materials
- Greater recycling using enhancing agents and reprocessing where necessary
- Enhance safety
- Reduce generation of waste


- Improved landscape and urban amenity
- Protected biodiversity within road allowance and in neighbouring vicinity and waterways
- Reduced impacts on watercourses and aquatic system
- Improved local air quality
- Reduced road-related noise
- Protection of cultural heritage
- Reduced GHG emissions

Encouraging New Technologies

Warm Asphalt Vs Conventional Hot Asphalt

- Savings in energy
- Decreased plant emissions
- Reduced exposure to fumes
- Higher incorporation of recycled asphalt
- Low/No odour
- Improved compaction
- Extended paving season
- Safety
- Longer binder life

Typical Road Rehabilitation Project

Typical distresses that need to be addressed during road rehabilitation

November 23, 2011

Surface Treatments

- Fog seal
- Slurry seal
- Microsurfacing
- Chip seal (single & double)
- Scrub seal
- Ultrathin friction course

Shallow Rehabilitation Treatments

- Asphalt overlay
- Cold planing
- Cold in-place recycling (CIR)
- Hot in-place recycling (HIR)
- White topping

- Partial and Full Depth Treatments
 - Total reconstruction
 - Full depth reclamation (FDR)
 - Expanded asphalt
 - Granular grade raise
 - Full depth asphalt removal
- Other Rehabilitation Treatments
 - Premium asphalt mixes
 - Central plant cold mix paving
 - Full depth crack repair and overlay
 - Warm mix asphalt

Range of Inputs for FDR

Stabilising Types

- Mechanical
 - Virgin aggregate, Reclaimed asphalt pavement, Crushed concrete
- Chemical
 - Lime, Portland cement, Flyash, Kiln dust, Mg/Ca chloride, Proprietary chemicals
- Bituminous
 - Liquid asphalt, Emulsion, Foamed asphalt
- Blends
 - Various combinations of items above

- Equipment
 - Self propelled reclaimer
 - Motor graders
 - Compactors
 - Dump haul trucks
 - Calibrated aggregate spreader
 - Water truck with spray bar
 - Calibrated bulk spreader
 - Mixer and tanker for slurries
 - Asphalt emulsion tanker
 - Liquid or foamed asphalt system
 - Front end loader

Typical Options

OPTION 1

- Cold mill
- Place milled material on shoulder
- In-place Process
- Add Virgin granular where required
- Resurface with two-lifts asphalt
- Estimated Life: 18 years
- Estimated initial cost of construction \$170,000/2 lane km

OPTION 2

- Cold In-Place Recycle
- Tack-coat and resurface with one lift of asphalt
- Estimated Life : 10 to 12 years
- Estimated initial cost of construction \$120,000/2 lane km

OPTION 3

- Mill and pave selected patches
- Overlay with one lift of asphalt
- Estimated Life: 5 to 7 years
- Estimated initial cost of construction \$60,000/2 lane km

Sustainability Assessment Criteria

Environmental

- Use of natural resources
- Energy consumption
- GHG emissions
- Construction air emissions/dust
- Waste generation
- Noise in service
- Runoff quantity/quality
- Smoothness
- Heat island effects

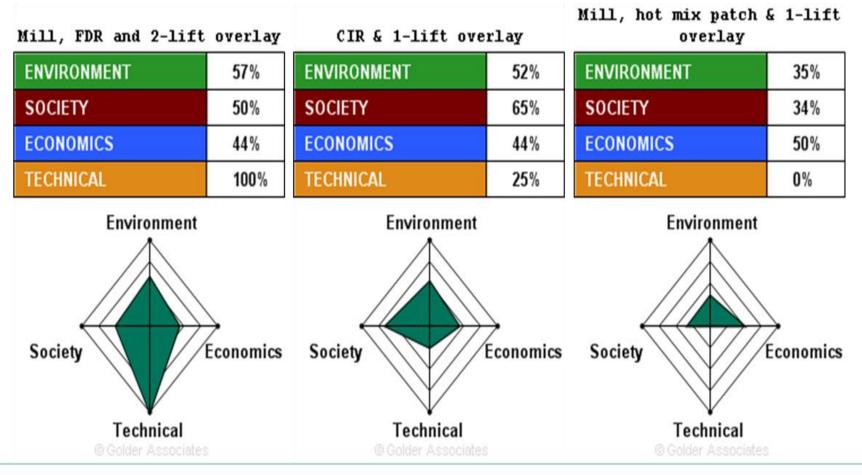
Social

- Health & safety during construction
- Construction impact on community
- Equity-local jobs, training
- Noise in service
- Rider comfort and safety
- User delay

Sustainability Assessment Criteria

Economic

- Construction cost
- Life cycle cost
- Impact on local business/commerce
- Future maintenance interventions


- Technical
 - Performance risk
 - Quality risks

Graphical Output from GoldSET Analysis

- Supporting proactive stakeholder engagement
- Leads to greater user satisfaction
- Fosters optimised expenditures and better outcomes
- Measures and rewards more sustainable construction technologies
- Encourages more innovation from equipment manufacturers and contractors
- Provides a framework for estimating the 'greeness' of new technologies
- Helps meet overall objectives of a more sustainable road network

Thank you!

