Évaluation de la performance des réfections de tranchées dans les chaussées publiques

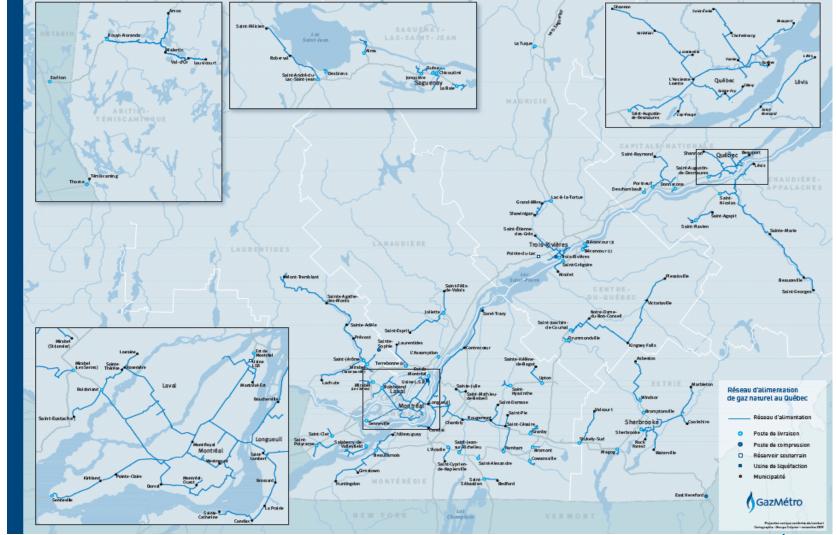
Présenté à Infra 2011 par

Nicolas Martel, ing. LVM Pierre Lefèvre, ing. Gaz Métro

Ordre du jour

- 1. Objectifs
- 2. Portrait sommaire de Gaz Métro
- 3. Approche de performance Document de référence LVM
- 4. Évaluation de la performance des tranchées de Gaz Métro
- 5. Conclusions

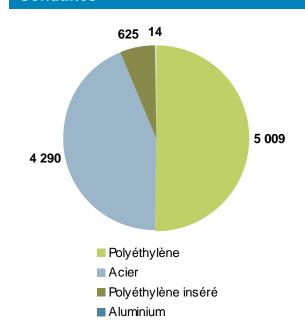
1- Objectifs

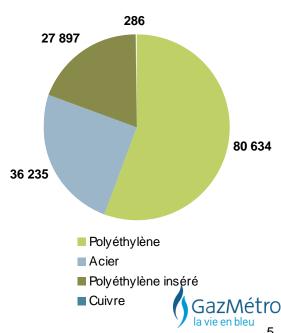

- Partager avec les intervenants une méthode d'évaluation de la performance des tranchées dans les chaussées publiques basée sur des paramètres objectifs et mesurables
- Démontrer son applicabilité avec des cas concrets et montrer leur performance mesurée
- Recueillir les points de vue des différents partenaires et des experts en gestion des chaussées pour bonifier la réflexion

2- Portrait sommaire de Gaz Métro Régions desservies (réseau d'alimentation)

2- Portrait sommaire de Gaz Métro Actifs en quelques chiffres

LES ACTIFS	
Conduites	9938 km
Polyéthylène	5009 km
Acier	4290 km
Polyéthylène inséré	625 km
Aluminium	14 km
Branchements d'immeuble	145052
Polyéthylène	80634
Acier	36235
Polyéthylène inséré	27897
Cuivre	286
Postes de livraison, détente, pré- détente, vannes et mesurage	2233





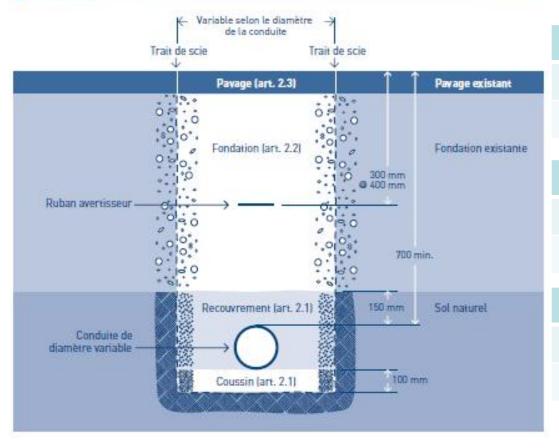
Conduites

Branchements d'immeuble

2- Portrait sommaire de Gaz Métro Développement du réseau 2007 - 2010

Région	Longueur de CP réalisée (mètres)	Longueur de CP réalisée dans les chaussées (mètres)	Portion de CP dans les chaussées
ESTRIE	21 911	3 732	17%
CHICOUTIMI	4 147	1 283	31%
MAURICIE	16 946	2 779	16%
QUEBEC	23 238	5 919	25%
ROUYN	3 233	126	4%
LAURENTIDES	106 963	20 512	19%
MONTEREGIE	90 912	6 227	7%
EST DE MONTRÉAL	15 016	6 532	44%
OUEST DE MONTRÉAL	30 950	8 861	29%
Total général	313 317	55 972	18%

2- Portrait sommaire de Gaz Métro Coupe-type pour les tranchées



2.4 COUPE TYPE

Voir figure 1

FIGURE 1 Coupe type – Revêtement flexible avec structure de chaussée

2.1	Coussin et recouvrement
	Sable non gélif ou poussière de pierre
	Compaction à 90% du Proctor modifié
2.2	Fondation
	Pierre concassée MG20
	Compaction à 95% PM couches 300 mm
	_
2.3	Pavage
	Mélange bitumineux de type EB10S
	100 mm par couches de 50 mm à 92%

3- Approche de performance Document de référence de LVM

- Deux concepts de performance ont été présentés à Gaz Métro par LVM:
 - Comportement de la tranchée et de ses environs immédiats dans le temps
 - Comportement de la tranchée et de ses environs immédiats par rapport à la chaussée environnante
- > Deux données d'état des tranchées ont été retenues pour fins d'évaluation des critères de performance:
 - Déformation
 - Fissuration

> Relevé de poutre de 1.8 mètre sur la tranchée

- Procédure normalisée (ASTM) et présentée dans les techniques d'auscultation du classeur chaussée du CERIU
- Largement disponible au Québec
- Cohérente avec la largeur habituelle de tranchée de Gaz Métro (0.6 mètre)

Interprétation des résultats

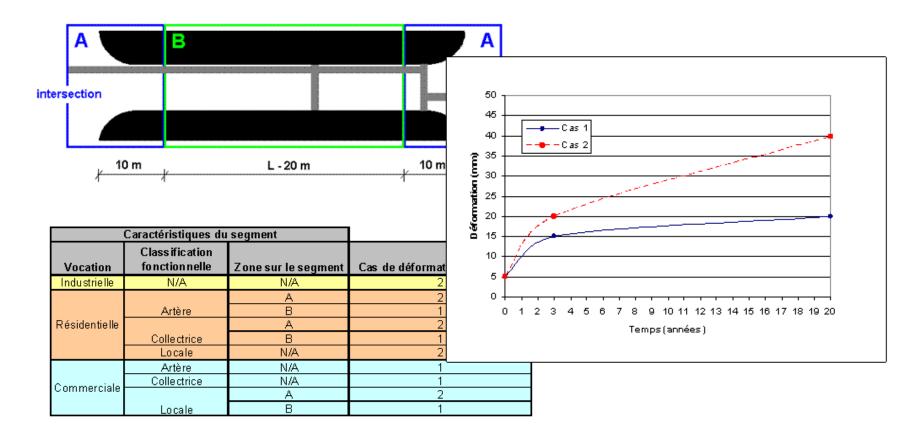
Le critère de déformation est un critère absolu; c'est-à-dire que des seuils d'acceptabilité quantifiables sont fixes dans le temps, peu importe le comportement de la chaussée environnante.

Seuils fonction

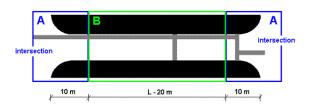
- de l'emplacement sur la chaussée (zone A ou zone B)
- de la classification fonctionnelle (artère, collectrice, locale) et de la vocation (industrielle, résidentielle, commerciale)

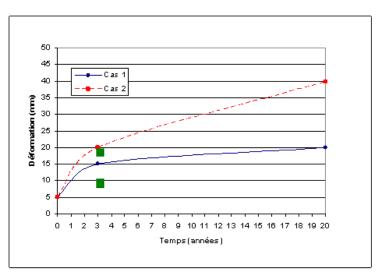
Valeurs de seuils

- Issues de divers valeurs du Guide d'identification des dégradations des chaussées souples
- Variables en fonction du temps avec une valeur de départ issue du CCDG



> Illustration des divers concepts





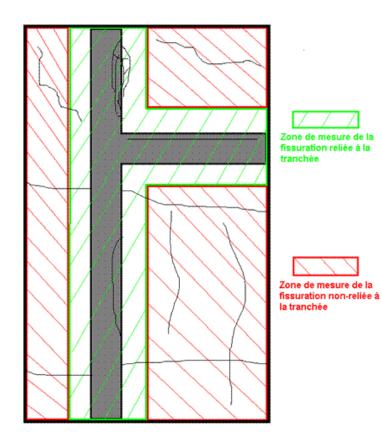
- + Exemple de détermination du respect des seuils
 - Artère commerciale avec tranchée mise en place il y a 3 ans.
 - Profondeur de déformation dans la zone A: 17 mm
 - Profondeur de déformation dans la zone B: 10 mm

	Caractéristiques du segment			
	Vocation	Classification fonctionnelle	Zone sur le segment	Cas de déformation admissible
	Industrielle	N/A	N/A	2
			А	2
		Artère	В	1
	Résidentielle		А	2
		Collectrice	В	1
		Locale	N/A	2
L		Artère	N/A	1
	Commerciale	Collectrice	N/A	1
	Commerciale		Α	2
		Locale	В	1

Les seuils de performance ne sont pas respectés

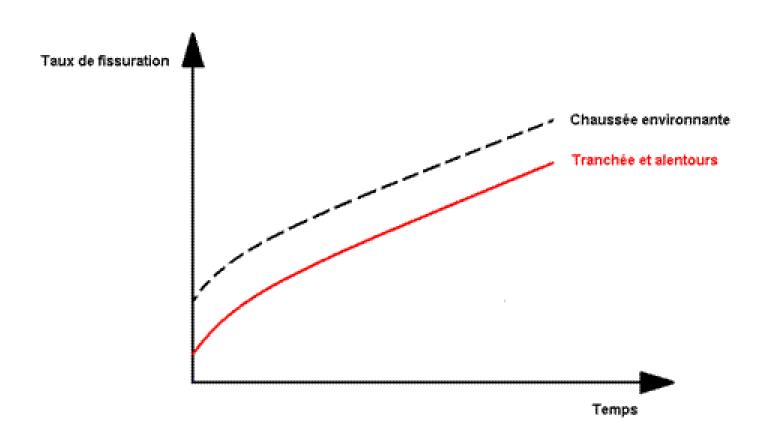
Relevé visuel in situ

- Simplicité de réalisation
 - Formation succincte
 - Équipement limité au maximum (craie, roulette de mesure, appareil photo)
- Non-limité géographiquement

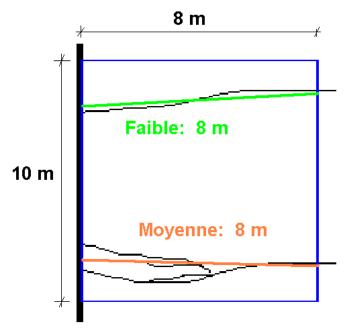


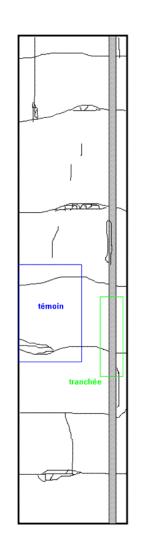
→ Interprétation des résultats

- Le critère de performance proposé consiste à ce que le taux de fissuration de la tranchée et de ses environs soit toujours plus faible que celui de la chaussée environnante. Il s'agit d'un critère relatif car aucun seuil absolu n'est spécifié. La chaussée au site de la tranchée doit tout simplement se comporter d'une meilleure façon que la chaussée environnante.
- Aspect important: les joints sont considérés comme des fissures lorsqu'ils sont ouverts et/ou détériorés.



> Illustration du concept

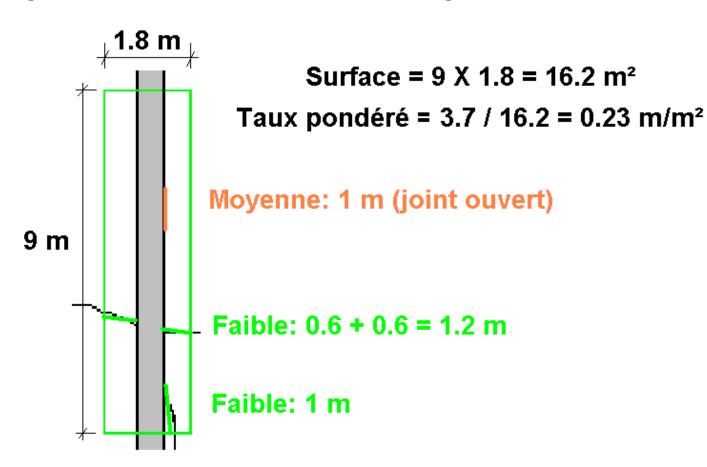




Exemple de détermination du respect des seuils

$$Tf(m/m^2) = \frac{\cancel{E}_{faibles}(m) \cancel{s} 1.0 + \cancel{E}_{moyennes}(m) \cancel{s} 1.5 + \cancel{E}_{majeures}(m) \cancel{s} 3.0}{Surface analysée (m^2)}$$

Surface = 8 X 10 = 80 m² Taux pondéré = 20 / 80 = 0.25 m/m²



Exemple de détermination du respect des seuils

Taux pondéré tranchée = 0.23 m/m²

plus faible que

Taux pondéré chaussée = 0.25 m/m²

Seuil de performance de fissuration respecté

3- Approche de performance Fenêtres d'inspection proposées

- > À la fin des travaux
 - Inspection sommaire
 - Déformation: 5 mm
 - Fissuration: Évaluation visuelle
- > 3 ans après la fin des travaux
 - Inspection détaillée au moyen d'un formulaire normalisé
- > Au besoin par la suite
 - En cas de doute ou de mauvais comportement

Formulaire d'inspection du comportement d'une tranchée de Gaz Métro en milieu municipal

Généralités		
Rue:		
De:		
À:		
Municipalité:		
Classification (artère, collectrice, locale):		
Vocation (industrielle, résidentielle,commerciale):		

Déformation		
Zone A	Zone B	
Longueur de tranchée (m):	Longueur de tranchée (m):	
Largeur de tranchée (m):	Largeur de tranchée (m):	
Surface de tranchée (m):	Surface de tranchée (m):	- 3
Mesure # 1 (mm):	Mesure # 1 (mm):	
Mesure # 2 (mm):	Mesure # 2 (mm):	
Mesure #3 (mm):	Mesure # 3 (mm):	
1. 1	Mesure # 4 (mm):	
Moyenne des mesures:	Mesure # 5 (mm):	- 1
	Moyenne des mesures:	
Photos:	Photos:	
Commentaires:	Commentaires:	

	W. F. M.	Fissura	
	Zone témoin	e de tranchée	Zone de tranch
	Longueur analysée (m):	nalysée (m):	Longueur analysée (m):
	Largeur analysée (m):	nalysée (m):	Largeur analysée (m):
	Surface analysée (m):	nalysée (m):	Surface analysée (m):
x 1	Fissure faible (m):		Fissure faible (m):
X 1	Fissure moyenne (m):		Fissure moyenne (m):
х 3	Fissure majeure (m):	majeure (m): x 3.0	Fissure majeure (m):
	Longueur totale pondérée (m):	ondérée (m):	Longueur totale pondérée (m):
	Taux de fissuration pondéré:	on pondéré:	Taux de fissuration pondéré:
	Photos de la zone de mesure:	e de mesure:	Photos de la zone de mesure:
	Commentaires:	mmentaires:	Commentaires:

Joints	Notes et observations générales du segment
Longueur totale:	
% ouverts:	
Longueur de joints ouverts:	
Inspecteur:	
mspecteur.	

Été 2010

- 18 sites de tranchées entre 3 et 20 ans :11 à Montréal, 3 en Montérégie, 3 dans les Laurentides et 1 en Estrie
- 18 sites subdivisés en 26 segments totalisant ± 3 km

Été 2011

- > 18 sites de tranchées entre 3 et 6 ans : 14 dans la grande région de Québec et 5 en Mauricie
- > 18 sites subdivisés en 39 segments totalisant ± 4,1 km

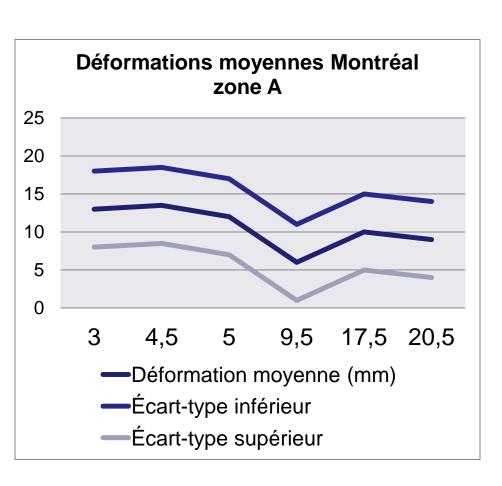
Sommaire des résultats 2010

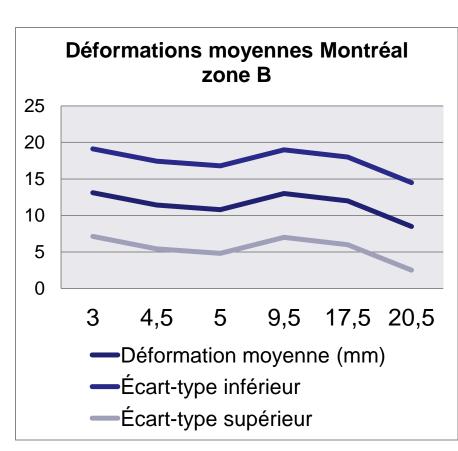
Par segment de chaussée:

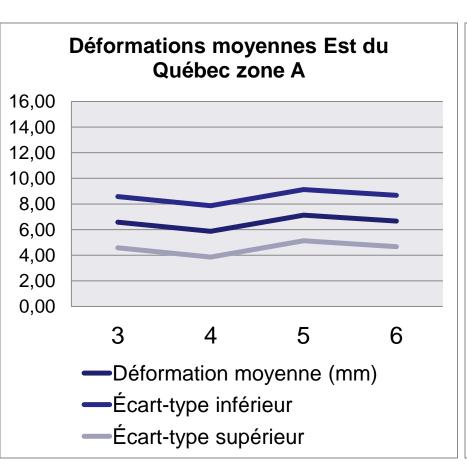
- ✓ 23 segments sur 26 (88%) rencontrent le critère de performance sur les déformations
- √ 18 segments sur 26 (69%) rencontrent le critère de performance sur la fissuration
- √ 15 segments sur 26 (57%) rencontrent les critères de performance à la fois sur les deux paramètres
- ✓ Sans l'ouverture du joint de construction, 22 segments sur 26 (85%) rencontreraient le critère de fissuration et 19 sur 26 (73%) les deux à la fois

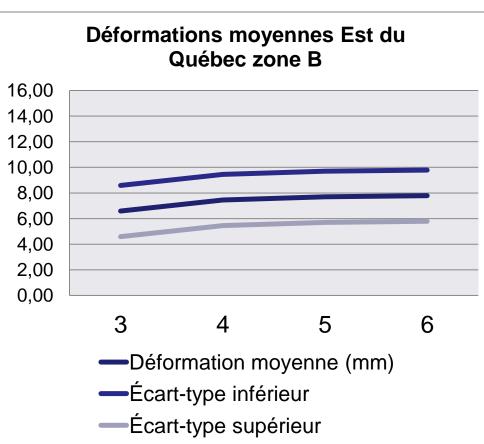
Sommaire des résultats 2011

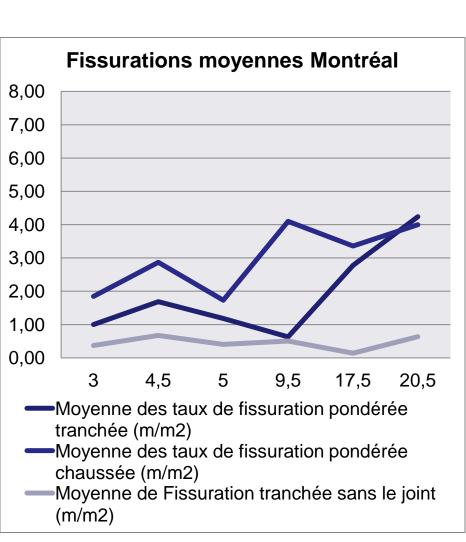
Par segment de chaussée:

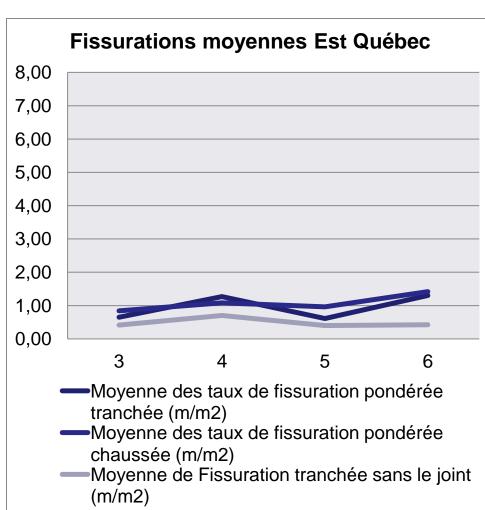

- √ 39 segments sur 39 (100%) rencontrent le critère de performance sur les déformations
- ✓ 22 segments sur 39 (56%) rencontrent le critère de performance sur la fissuration
- ✓ 22 segments sur 39 (56%) rencontrent les critères de performance à la fois sur les deux paramètres
- ✓ Sans l'ouverture du joint de construction, 31 segments sur 39 (80%) rencontreraient le critère de fissuration et les deux à la fois











5- Conclusions

- Une méthodologie novatrice d'évaluation de la performance de l'état des tranchées basée sur les caractéristiques de déformation et de fissuration a été proposée.
- Cette méthodologie a été testée à grande échelle. Elle a pu être reprise aisément par plusieurs opérateurs et dans plusieurs régions du Québec.
- Les données recueillies montrent une bonne performance générale des tranchées qui est significativement meilleure lorsque les joints sont contrôlés.

