

How Should You Be Designing Your Permeable Pavements? New ASCE Standard for Permeable Interlocking Concrete Pavement

David Hein, P. Eng. Vice-President, Transportation Applied Research Associates, Inc. Spring 2014: Permeable Pavements Recommended Design Guidelines ASCE EWRI Committee Report – online only

- Fact sheets
- Checklists
- Design information
- Maintenance
- Standards, guide specs
 & modeling methods
- Research needs

Establishes common terms for all permeable pavements

ASCE PICP Standard Guidelines

Content: Section 1 – General Scope Section 2 – Preliminary Assessment Section 3 – Design (structural & hydraulic design, additional considerations) Section 4 – Construction Section 5 – Maintenance

Goal: Early 2017 completion

Uses:

Adoption by State, Provincial & Local agencies Design professional & contractor guidance ASCE STANDARD

American Society of Civil Engineers

Design, Construction and Maintenance of Permeable Interlocking Concrete Pavement

This document uses both the International System of Units (SI) and customary units.

Published by the American Society of Civil Engineers

Permeable Interlocking Concrete Pavement (PICP)

Pavers, bedding & jointing stones

Base reservoir Stone – 100 mm) thick

Subbase stone thickness varies with water storage & traffic

Permeable Pavement Functions

Assessing Suitability (S 2.1)

Considerations	Description
Cost efficiency (including life cycle costs)	Capital cost assessment needs to consider cost of pavement,
	drainage infrastructure, stormwater quality management, and land
	use. Overall long-term life-cycle costs can be very competitive if
	stormwater quality and quantity benefits are taken into account.
Environmental approval process	Verify permeable pavements are permitted, or if additional
	environmental approvals are required.
Stringent receiving water quality standards	The presence of protected watersheds, cold water streams,
	marshland, etc. may preclude the use of permeable pavement
	systems, or require more extensive water quality treatment.
Safety	Pavements are able to accommodate safety features such as traffic
	calming (rumble strips), and colored units for identification. Reduced
	ice formation and slip hazards.
Site grades	For grades of more than 5 percent, system will be less effective at
	promoting infiltration and have reduced water storage capabilities.
Depth of water table	Permeable pavements that include an infiltration component should
	not be used in areas where the water table is within 0.6 m (2ft) of
	the top of the soil subgrade.
Winter maintenance, winter sanding	Procedures for snow and ice removal are similar to those for
	conventional pavements. De-icing salt usage can be reduced, use of
	courser sand for traction control recommended. PICP are proven to
	perform even during below freezing conditions.
Risk of accidental chemical spill	PICP may assist in containment of accidental spills (requires the use
	of a geomembrane liner).

Assessing Suitability (cont.)

Considerations	Description
Amount and intensity of precipitation	Supplemental quantity control may be required in areas of frequent,
	high intensity storms.
Complexity of site conditions	The design and construction of permeable shoulders may be
	problematic in areas where retaining walls, utilities, septic systems,
	municipal or private wells are present.
Geotechnical Aspects	Presence of organics, fill soils, swelling clay soils, karst geology, or
	shallow bedrock may pose geotechnical risks that introduce added
	design complexity.
Mandates for water quality control	Permeable pavements may contribute substantially to water quality
	improvement.
Mandates for water quantity control	Permeable pavements provide stormwater management alternatives
	to more costly or complicated practices.
Maintenance protocols	Permeable pavement systems require mandatory non-traditional
	maintenance practices such as vacuum sweeping.
Structural design	Design of PICP for moderate to heavy axle loads or high traffic counts
	may require additional analysis and details.
Interest in innovation	Designs that include PICP can provide opportunity for innovation and
	sustainable benefits.
Owner experience and resources	Permeable pavements should be designed to address owners
	expectations for performance, aesthetics, inspections, maintenance,
	benefits, costs, etc.

- Pedestrian areas, parking lots, low-speed residential roads
- 30 m from wells
- 3 m from building foundations unless waterproofed
- Infiltrating base: Min. 0.6 m to seasonal high water table
 Max. contributing impervious area: PICP = 5:1
- Surface slope: as much as 18% ... w/ subgrade check dams
- Subgrade slope: >3% use berms

Resilient Modulus, M_r AASHTO T-307 CBR ASTM D1883 R-value ASTM D2844

> AASHTO Soil Classification AASHTO M-45

> > Unified Soil Classification ASTM D2487

Equivalent Single Axle Loads or 80 kN ESALs Characterizes performance (rutting)

What is an ESAL?

Traffic Loading and Design

Pavement Class	Description	Design ESALs	Design TI
Arterial	Through traffic with access to high-density, regional, commercial and office developments or downtown streets. General traffic mix.	9,000,000	11.5
Major Collector	Traffic with access to low-density, local, commercial and office development or high density, residential sub-divisions. General traffic mix	3,000,000	10
Minor Collector	Through traffic with access to low-density, neighborhood, commercial development or low-density, residential sub-divisions. General traffic mix.	1,000,000	9
Bus Terminal	Public Transport Centralized facility for buses to pick up passengers from other modes of transport, or for parking of city or school buses.	500,000	8.5
Local Commercial	Commercial and limited through traffic with access to commercial premises and multi-family and single-family residential roads. Used by private automobiles, service vehicles and heavy delivery trucks	330,000	8
Residential	No through traffic with access to multi-family and single-family residential properties. Used by private automobiles, service vehicles and light delivery trucks, including limited construction traffic.	110,000	7
Facility Parking	Open parking areas for private automobiles at large facilities with access for emergency vehicles and occasional use by service vehicles or heavy delivery trucks.	90,000	7
Commercial Parking	Restricted parking and drop-off areas associated with business premises, mostly used by private automobiles and occasional light delivery trucks. No construction traffic over finished surface.	30,000	6
Commercial Plaza	Predominantly pedestrian traffic, but with access for occasional heavy maintenance and emergency vehicles. No construction traffic over finished surface.	10,000	5

Need: Validated Base Thickness Charts

Design Tables for PICP Accelerated Pavement Testing UC Pavement Research Center

PICP Test Track Construction

Total Surface Rutting - Dry

Total Surface Rutting - Wet

Summary of Rutting Models

Layer	Put Madal ¹	Moisture	Model Parameters				
		Condition	а	b	С		
Combined bedding		Dry	0	4.0	-		
& base	$KD_{BB} = d \times \Pi_{SD} + D$	Wet	-0.012	13.1	-		
Subbase	$DD = (a \times SCDb) \times NC$	Dry	3.10E-06	2.70	1		
	$KD_{SB} = (a \times SSK^{*}) \times N^{*}$	Wet	3.10E-06	2.70	1		
Subgrade (Silty	$DD = (a \times CCD + b) \times NC$	Dry	0.03	-0.01	0.5		
clay)	$KD_{SG} = (a \times SSK + D) \times N^{\circ}$	Wet	0.03	-0.01	0.5		

¹ RD_{xx}, rut depth of xx layer (BB=surface (paver, bedding and base); SB=subbase; SG=subgrade), mm;

h_SB, thickness of subbase, mm;

SSR, shear stress/strength ratio at the top of the layer;

N, load repetition;

a, b, c, model constants.

MS Excel PICP Design Tool

			PIC	P Desig	n Tool																				
		Layer	Moisture Condition	Thickness (mm)	Stiffness (MPa) ¹	Poisson's Ratio	c (kPa)	φ(°)																	
	Stano 8	Surface (80 mm concrete paver plus 50 mm #8 bedding and 100	Wet	230		0.35																			
	M aterials	mm #5 / b ase)	Dry Wet	450	110	0.35	-	- 30																	
		Subbase (ASTM #2)	Dry	450	122	0.35	0	45																	
		Subgrade (Clay)	Wet		37	0.35	9	15																	
	Climate	Number of Days in a Year When the Subbase has Standing Water (Wet Days) ² 50	¹ The wet stiffness to dr respectively. ² Seasons when the subl	V DU U.30 II II DU U.30 II II III III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII																					
		Traffic Volume Calculation	Axle Type	Axle Load (kN)	Axle-Load		Lifetime Repe	tition		L ifetime E SAL s															
					Distribution (%)	Wet Season ²	Dry Season	Total	LSALS	(Millions)															
		AADT (two-way)	-	10	3.25	9,959	62,740	72,699	18																
Input			5,700	-	20	5.97	18,286	115,200	133,486	521															
		Percent Trucks, 1		30	5.83	17,850	112,456	130,307	2,577																
		10.0%		40	9.40	13,268	85,481	99,050	6,191	023															
		Direction Distribution Factor, D		50	2.42	9,896	62,345	62,593	10,023																
		Lane Distribution Factor, I.	Single	70	3.13	9,504	60.443	70.037	41 054																
		0.8		80	2.40	7363	46 388	53 751	53 751																
	T raffic	Annual Growth Rate, r	1	90	90 0.85	2.594	16,340	18,933	30.327																
		3.0%	1	100	0.15	445	2,804	3.249	7,931																
		Design Life (years), Y	1 I	120	0.03	94	594	68.8	3,485																
		20																		160	0.01	31	194	225	3,596
		Traffic Safety Factor, TSF		20	1.59	4,887	30,788	35,675	17																
		1.0	Tadam												40	5.79	17,734	111,727	129,461	1,013					
		T ruck T raffic Volume, V							60	6.76	20,729	130,591	151,319	5,985											
		2,236,814				80	4.48	13,720	86,437	100,158	12,520														
				100	3.42	10,472	65,971	76,443	23,329																
			Laitsein	120	3.86	11,815	74,432	86,247	54,578																
		$V = 365 \times AADT \times T \times D \times L \times$		140	4.12	12,630	79,569	92,199	108,091																
		$(1+r)^{2/2} \times Y \times TSF$		160	160 1.94	5,946	37,460	43,406	86,813	6,813															
				180	0.29	900	5,670	6,570	21.048																
				200	0.05	154	973	1,128	5,506																
		Layer	Moisture Condition	Shift Factor	Rut Depth by Layer (mm)	Expected Total Rut Depth (mm)	Allowab le Rut Depth (mm)	Satisfactory ?																	
		Surface (80 mm concrete paver	Wet	1.00	11																				
Dutcome	Rut Danth	plus 50 mm #8 bedding and 100	Der	1.00	33																				
acome			Wet	1.00	15.0	65 3	25.0	\mathbf{N}																	
		Subbase (AST M #2)	Dry	1.10	25.0	05.5	23.0	<i>1</i> v																	
		Submada (Chri)	Wet	1.23	9.0																				
		Suograde (Cuty)	Dry	1.10	12.0																				
		Calculate Ru	t Depth	Desig	n Subbas	e Thickn	ess																		

Example Design Tables

Number of Days in a Year when the Subbase has Standing Water (Wet Days)			0 to 9				10 to 29				30 to 49			
Resilient Modulus of Subgrade.	Dry	40	60	80	100	40	60	80	100	40	60	80	100	
MPa (CBR)	Wet	24 (1.6)	36 (3)	48 (4.8)	60 (6.8)	24 (1.6)	36 (3)	48 (4.8)	60 (6.8)	24 (1.6)	36 (3)	48 (4.8)	60 (6.8)	
Lifetime ECALs (Traffic Index)		Minimum Subbase Thickness in mm for ASTM No. 2 Aggregate												
		25 mm Allowable Rut Depth												
50,000 (6.3)		150	150	150	150	150	150	150	150	150	150	150	150	
100,000 (6.8)		150	150	150	150	210	150	150	150	260	150	150	150	
200,000 (7.4)		230	150	150	150	315	210	150	150	365	255	160	150	
300,000 (7.8)		290	180	150	150	375	265	170	150	425	315	215	150	
400,000 (8.1)		330	220	150	150	420	305	210	150	470	350	255	175	
500,000 (8.3)		360	250	160	150	450	335	240	160	500	380	280	205	
600,000 (8.5)		385	275	185	150	475	360	260	180	525	405	305	225	
700,000 (8.6)		410	295	205	150	495	380	280	200	550	425	325	245	
800,000 (8.8)		425	310	220	150	515	395	295	215	565	440	340	260	
900,000 (8.9)		440	325	235	155	530	410	310	230	585	455	355	270	
1,000,000 (9.0)		455	340	250	165	545	425	325	240	600	470	365	285	

Number of Days in a Year when the Subbase has Standing Water (Wet Days)			50 to 89				90 to 119				120 or more			
Resilient Modulus of Subgrade.	Dry	40	60	80	100	40	60	80	100	40	60	80	100	
MPa (CBR)	Wet	24 (1.6)	36 (3)	48 (4.8)	60 (6.8)	24 (1.6)	36 (3)	48 (4.8)	60 (6.8)	24 (1.6)	36 (3)	48 (4.8)	60 (6.8)	
Lifetime ESALs (Traffic Index)		Minimum Subbase Thickness in mm for ASTM No. 2 Aggregate												
		25 mm Allowable Rut Depth												
50,000 (6.3)			150	150	150	210	150	150	150	230	150	150	150	
100,000 (6.8)		285	180	150	150	325	215	150	150	340	235	150	150	
200,000 (7.4)		395	285	185	150	430	320	215	150	450	335	235	155	
300,000 (7.8)		455	340	240	160	495	375	275	195	515	395	290	215	
400,000 (8.1)		500	380	280	200	535	415	310	235	555	435	330	250	
500,000 (8.3)		530	410	305	230	570	445	340	260	590	465	355	275	
600,000 (8.5)		555	435	330	250	595	470	360	280	615	490	380	300	
700,000 (8.6)		580	455	350	270	620	490	380	300	640	510	400	315	
800,000 (8.8)		600	470	365	285	640	505	395	315	660	525	415	335	
900,000 (8.9)		615	485	380	295	655	525	410	330	675	540	430	345	
1,000,000 (9.0)		630	500	390	310	670	535	425	340	690	555	440	360	

Final Comment – Structural Design

- Traffic Type and Composition Permeable pavements can be used heavy vehicular applications, but a qualified pavement engineer should be consulted for these specific applications.
- Limitations speed limit should be less than 65kph

Hydraulic Design (S3.3)

Determine Hydraulic Goals

- Volume control (maintain predevelopment conditions)
- Water quality (catch first flush)
- Thermal quality
- Peak flow control
- Downstream erosion control
- Infiltration/recharge targets
- Ecosystem/habitat maintenance

Water Balance

Input - Precipitation Data

Percentile Storm Data

Figure 1b-Total Average Annual Occurences vs Daily Precipitation (based on 1991 Toronto Rainfall Data from 16 Rain Gauge Stations)

Output – Subgrade Infiltration

- **Double ring infiltrometer test**
- Use avg. infiltration rate
- Apply safety factor for clogging & construction compaction

Selecting the PICP System Type

No-infiltration Design

 $V_{W} = P(A_{P}) + R(A_{C}) - Q_{U}T_{S}$

Pipe flow can be calculated using the orifice equation

Full-infiltration Design

$V_{W} = P(A_{P}) + R(A_{C}) - I(T_{S})A_{I}$

If Vw > 0, then make sure the subgrade is not saturated for too long (T_D) using:

$$T_D \geq \frac{V_W}{A_I * I}$$

Partial-infiltration Design

 $V_{W} = P(A_{P}) + R(A_{C})$ $- I(T_{S})A_{I} - Q_{U}T_{S}Z$

Infiltration Storage volume dictates pipe location (elevation).

Underdrain elevation factor (Z) used to adjust for duration of pipe flow

 Outlet structures provide for future modifications to the storage depth, and provide a convenient monitoring location

• Sites with subgrade slopes over 3% often require buffers, weirs, check dams, etc. to control water flow

 Roof water can be discharged onto, or into, the pavement

 Impermeable liners can be used adjacent to buildings

• Separation is required between permeable and traditional base materials

Pre-Construction Meeting (S4.2)

- PICP construction
 sequence
- Erosion & sediment control plan
- Subgrade protection
- Material storage
- Paver stitching
- Inspection criteria
- Contractor
 certification

Erosion and Sediment Control (S4.3)

Construction Inspection Checklist (S4.4)

Minimizing compaction

Construction Inspection Checklist

Place geomembranes and geotextiles as specified

Construction Inspection Checklist

Underdrain placement

Construction Inspection Checklist

Aggregate placement, compaction and testing

Maintenance Guidelines (S5)

• **Contaminant Loading** – Minimize/remove potential contaminants such as winter sand, biomass (tree leaves and needles, grass clippings, etc.) and sediment

Maintenance Guidelines

Infiltration Testing – Test surface infiltration rate using ASTM C1781

Routine and Remedial Maintenance

- Regenerative air vacuum sweeper
 - Routine cleaning
 - Removes loose sediment,
 - leaves, etc.
 - More common
 - ~\$2,500/ha
- True vacuum sweeper
 - 2X more powerful
 - Restores highly clogged surfaces
 - Narrower suction

Winter Maintenance

- Snow melts– lower risk of ice
- Does not heave when frozen
- Use normal plows dirty snow piles clog surface
- Deicing salts okay
- Sand will clog system use jointing material for traction

Status of ASCE Standard Guideline

Switzer and Billion & All States of States

- Full Standard will undergo editing before going to public comment for 45 days late in 2016
 - Expect to publish the final standard early in 2017