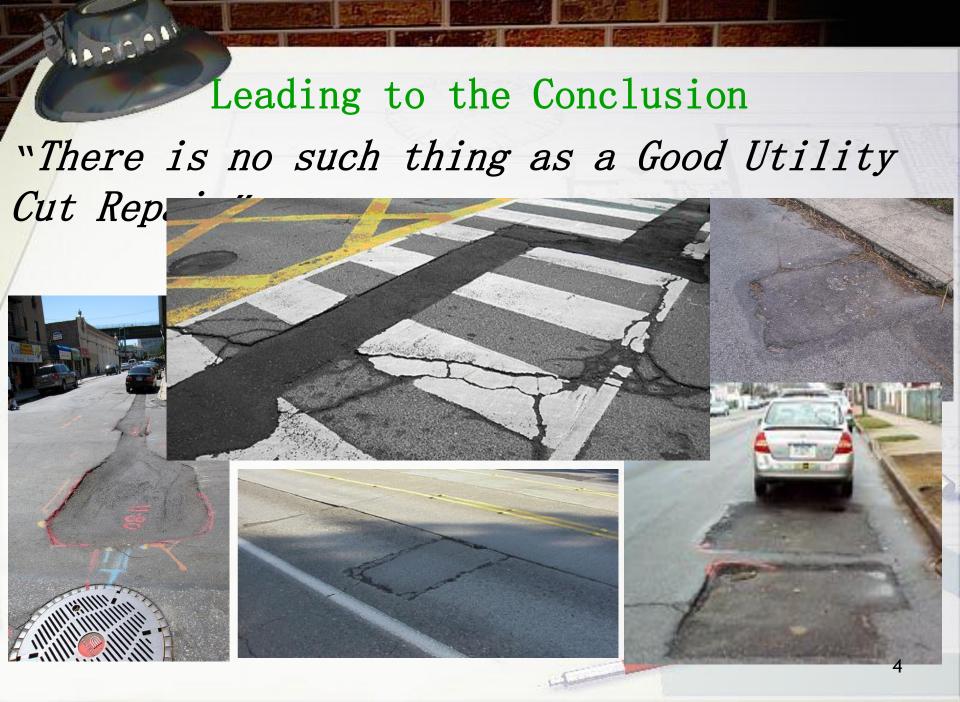


Vers une nouvelle dynamique municipale pour une urbanité durable

A Core Strategy for Pavement Saving Utility Cuts by Utilicor Technologies Inc.


Montreal Quebec Canada December 2nd, 2014

Outline

- Problems with Conventional Utility Cuts
- Keyhole Coring & Reinstatement A Better Way
- Mechanics of Excavation:
 - Size, Shape, Cut and Repair Methods
- Field Proven Repair Method
- Keyhole Technology Applications
- Proof of the Process and Testing
- Environmental Benefits Reduced Carbon Footprint

What's wrong with Conventional Pavement Cuts?

- They settle and crack and result in a bumpy ride.
- They reduce performance life of the pavement.
- The sealant squeezes out allowing ground water to penetrate into the sub-base where it leads to premature pavement failure.
- They result in potholes that must be repaired • They and over and don't match the most of the n
- PMEY and Qyfy and don't match the rest of the pay
- The road no longer performs as a load bearing sys
- The pavement deteriorates sooner.

But there is a Better Way ... *Keyhole Coring & Reinstatem*

Mechanics of Excavation & Repair

- 1. Size: Smaller is Better
- 2. Shape: Rectangular shape is Problematic Corner Cracks
- 3. Cut Method: How You Cut is Important Low Impact
- 4. Repair Method: Waterproof Joint, Restore Load Transfer Ability, Aesthetically Pleasing

1. Smaller is Better

Smaller is better and less intrusive

Laparoscopic Surge

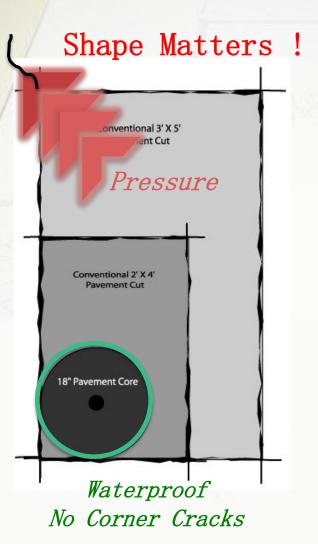
- Smaller Incision
- Short Recovery Period
- Faster Healing
- Smaller Scar
- Lower Cost

1. Smaller is Better

Smaller is better and less intrusive

Laparoscopic Surgery

- Smaller Incision
- Short Recovery Period
- Faster Healing
- Smaller Scar
- Lower Cost


Keyhole Operatio

- Smaller Opening (keyhole)
- Faster Restoration

and safer <u>--</u> no men in the

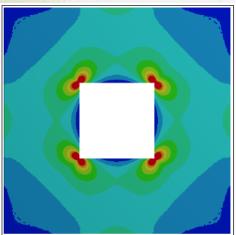
- Less Damage to Road System
- Smaller Repair Footprint
- Lower Cost

2. Circular Shape is Better

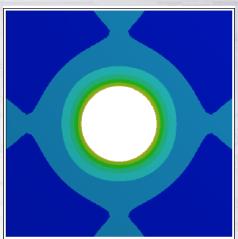
• Smaller Circular Shape - More Precise Excavation

- -Waterproof: No saw over-cuts at the corners
- -Environmentally friendly, reuses materials, creates no spoils and no VOCs
- -Reduced surface scarring -- 10 to 20 times SMALLER than conventional restoration $(1.75 \text{ ft}^2 \text{ vs } 24 \text{ ft}^2 \text{ to } 35 \text{ft}^2)$
- -Circular geometry with no corner cracks • Proven Strength -- NO Failures

-Reinstated core will support 50,000 lbs wheel load


• Better Performance -- Reduced Delay

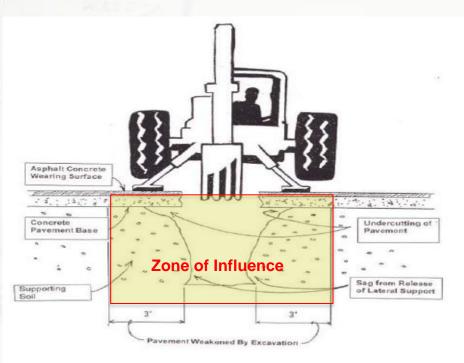
-Reduced pavement deterioration -- no potholes


- -Reduced traffic delay -- no additional road closing for repaying -- In and Out the same day.
- -Aesthetically pleasing perfect surface match invisible
- Reduces Pavement Restoration Cost by 87%

• Safer for Workers and Public

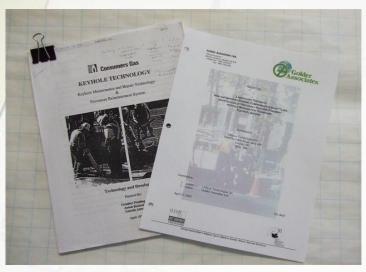
raffic Pressure = Corner Cracks

Rectangular format concentrates FOUR TIMES MORE Traffic Pressure in corners than Circular format, causing corner pressure cracks that allow water penetration.



3. How You Cut is Important.

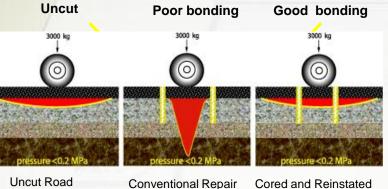
- Conventional excavation (Jackhammer, Backhoe, Pavement Breaker) weakens pavement well beyond the cut causing subsidence in "Zone of Influence"
- Precise coring operation eliminates Zone of Influence and reduces pavement damage



The precise coring process and vacuum excavation eliminates any "Zone of Influence".

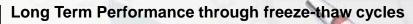
4. Proven Repair Method

Golder Associates 10 year Engineering Study (1992-2002):


Golder Associates Engineering Reports 1996 and 2003

FINDINGS:

- Reinstated Core Reunites Pavement Sections with Mechanical Waterproof Joint
 - -No sealants to squeeze out with action of traffic
 - -No ground water penetration
- Restores Load Transfer Capability of Pavement System


• "Based on trials and testing we are satisfied that Process will ensure satisfactory long term performance of the pavement reinstatement."

Proven Repair Method

Effective Load Transfer

Fast Setting, Rapid Strength Gain Convenient, Consistent, Replicable

Dec. 2002

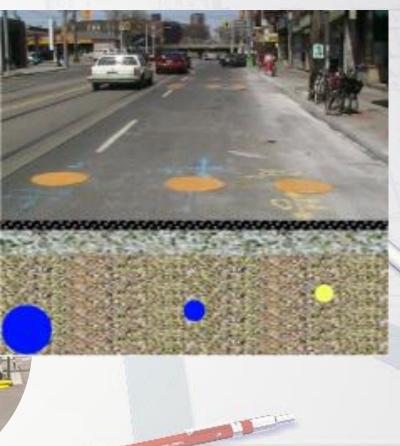
Comprehensive Laboratory Testing

Application of Keyhole Technology What is Keyhole Technology ?

- Method of accessing or viewing underground utilities through small holes or "keyholes"
- Keyhole coring excavates the pavement and vacuum excavation exposes the utilities

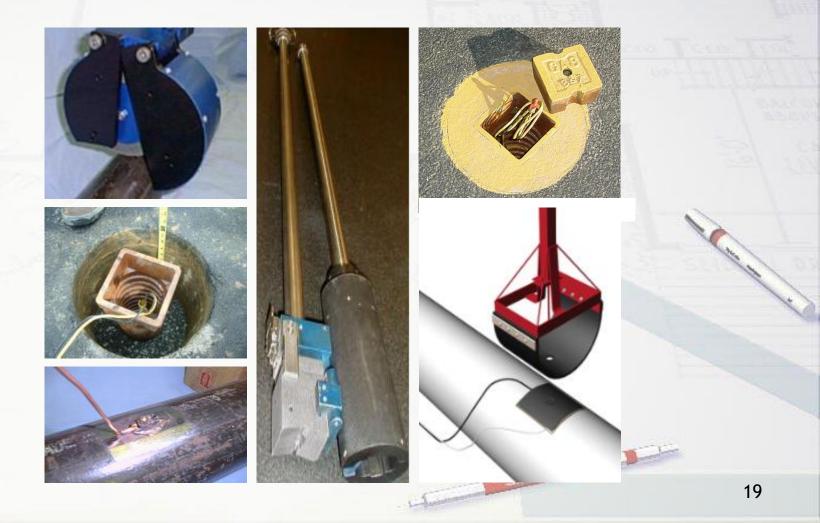
Keyhole Applications

How Does it Work ?

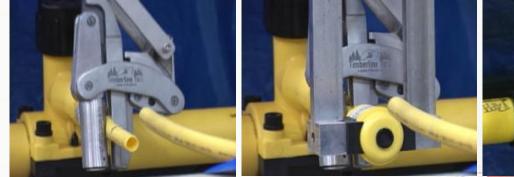

 Expose underground facilities and perform necessary work using longhandled tools

Keyhole Applications

Potholing for HDD - Cored Openings


- One contractor performed over 2,500 damage prevention cores in 2006
- About 80% are for inspection purpose only


Keyhole Applications Cast Iron Joint Sealing -- Encapsulation



Keyhole Applications Cathodic Protection - Anode Insertion

Keyhole Applications Service Cut-off -- Abandonment

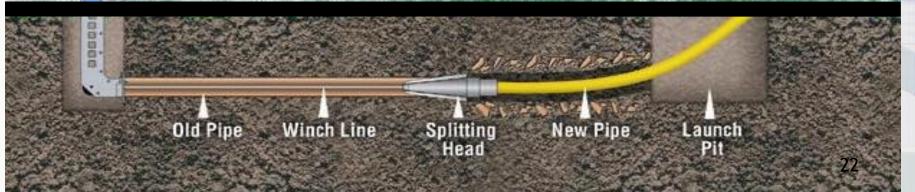
Keyhole Applications PE Service Installation - Lateral Reconnection

Fuse 2"X1/2" plastic tee

Connect 1/2" tube to service tee

Soap test new service connections

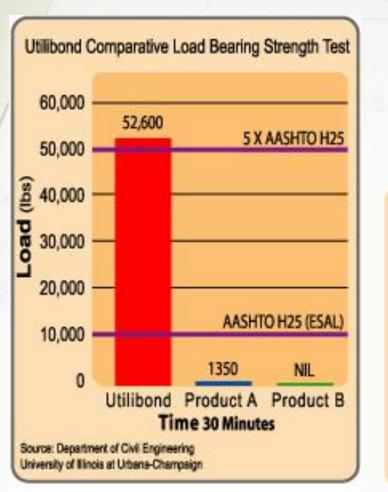



Completed service transfer

Keyhole Applications Main Replacement - Pipe Splitting

Keyhole Applications

Valve Maintenance and Replacement


Keyhole Applications Camera Inspection on Live Mains

Keyhole Applications Final Repair

Almost Invisible

12.01

University of Illinois Urbana-Champaign

Bond Strength and Public Convenience

 Utilibond is the ONLY bonding compound that gains full strength in 30 minutes and is stronger than the pavement.

Reduced Delay Greater Public Convenience

GTI No Backfill Bottomless Test

2221

Core 8"

Vacuum down 6"

Suspend false bottom

Pour in Pea stone

Pour in Utilibond

Replace core

Loading machine

10,000 lb Load

Repeat

43,378 Passes Later ... **Wheel Track**

Still Intact

27

Restoration of Utility Cut Study Toronto Field Experiment 2001-03

CONVENTIONAL TRENCH

- Noticeable failures in conventional cut.
- Joint between road and cut opened.
- **Settlement** in trench along wheel path
- Joint seal was lost because of traffic.

ROTARY CUT KEYHOLE

- No defects.
- **Performed well** throughout life of project.
- Core remained level with the road.

National Research

Council Canada 28

- The bonding material remained intact
- Waterproof bond.

• Higher levels of moisture (compared **REPORT**eyhorkeyhole construction is an effective restoration technique that should be encouraged whenever feasible."

Better Method - Extends Pavement Life

- Precise Coring No Heavy Equipment -No Zone of Influence
- No Pressure Corner Cracks or Saw Over-Cuts -No ground water penetration
- Restores Load Transfer Capability of Pavement System
- Reunites Pavement Sections with Mechanical Waterproof Joint

 -No sealants that can squeeze out with action of traffic needed
 -No ground water penetration
- Environmentally Friendly Consumes Fewer Resources

 Reuses original pavement core no spoil to truck away no new paving materials required.
 No VOCs to escape -- 1/12 Carbon Footprint of conventional methods
- Reduced Public Inconvenience Aesthetically Pleasing Cost Effective
 - -Shorter and fewer road closings -- Reduced traffic delays
 - -Reduced visual scarring Exact pavement match
 - -Saves money for Taxpayer/Ratepayer.

Advantages for the Municipality & Public

- Improved Appearance. Almost invisible, matching circular core -- less than 1/10 the size of conventional road cut).
- Reduced Damage to the Pavement. Road restored to original design specification. No sunken patches or weakened or failed roads. No Potholes.
- Cleaner, Safer, Less Intrusive Worksite: No jack-hammers or large excavation equipment -- less noise and mess and reduced disruption for neighbors. No spoil trucked through city.
- Fewer Complaints from Public.
- Reduced Traffic Disruption
- Improved Logistics: Restoration is

Reduced Carbon Footprint

Coring

uo

Excavati

Restoration

Core

Vacuum

Same Day

Reinstate

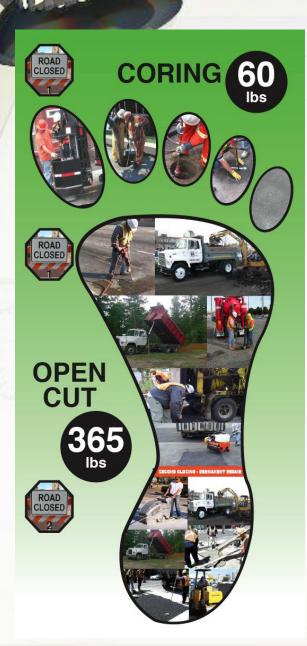
Finished Repair

Conventional

Excavate Pavement

Compact Patch

Dump Spoi



Reduced Carbon Footprint

 Coring and Reinstatement has an <u>Operating</u> <u>Carbon Footprint ONE-SIXTH</u> the size of Conventional excavation and restoration methods (60 lbs vs 365 lbs)

BUT if you add the CO_2 emitted in the production of the cement products used in the Repairs

• <u>Total Carbon Footprint</u> of the Conventional method is 12 TIMES the size of Keyhole Coring & Repair (845 lbs vs 69 lbs)

.6 million Utility Cut Permits (issued by municipalities every year)

Environmental Impact of Coring

• 20-25% of utility cuts can be small holes (Gas Technology Institute)

If 800,000 small hole utility cuts in NA were performed with keyhole coring and reinstatement:

Reduction in asphalt used:

enough to resurface 650 miles of 4 lane highway Reduction in spoil disposal:

Reduction in work zone delay:

2 million tons

27 million cu. ft.
-- enough to fill 200,000 dump trucks
2.8 million hours
1.9 million gal fuel
\$520 million cost

Restoration Cost Savings to Utilities:

Reduction in GHG emissions,

320,000 Tons of GHG Emissions

 \approx equal to CO₂ emissions from Average US Power Plant (2.8 billion tons CO₂ ÷ 8000 power plants)

\$340 to \$900 million

Questions and Answers

Marshall Pollock President & CEO

Utilicor Technologies Inc. 416 391 3901 www.utilicor.ca

35