

Optimizing Physical Condition Assessment Dollars using Statistical Results

Vers une nouvelle dynamique municipale pour une urbanité durable

I^{IR} AU 3 DÉCEMBRE | PALAIS DES CONGRÈS DE MONTRÉAL

Introductions

- Annie Vanrenterghem Raven, PhD,
 Principal, infraPLAN, LLC, New York,
 NY
- Kurt Vause, Engineering Director, AWWU, Anchorage, Alaska

Presentation Outline

- Present Water Sector Practices
- Case Study: AWWU
 - AWWU system, approach and tools
 - Statistical Modeling & pipes selection
 - Use of Condition Assessment techniques to confirm statistical modeling
 - Results
 - Costs & Benefits from approach
- Conclusions

Renewals Planning across the Water Sector today:

- Emerging awareness of Risk assessment approaches (LOF and COF), but....
- Reliance on semi-quantitative scoring criteria to answer question: what projects should I do?

AND

- Limited use of statistical techniques and Utility specific data sets, instead.....
- Renewal planning based on 'typical' service lives (EUL's) because condition data are not used, or is lacking.

Water Sector has reluctantly embraced condition assessment

Asset Management and Condition Assessment

- Overall CA seems little used, given its potential
 - Typically, used by those that have suffered spectacular failures - it is a threshold of pain thing
 - Apprehension as to "unwelcome news" it is a risk and liability thing
 - Problems also, if no problems identified it is an accounting thing

But it could help the sector:

Asset Management and Condition Assessment

- Condition Assessment (CA) could be an important tool to help close the IFG
 - Help find pipe likely to fail, from pipe that is merely old
 - Better understand true condition of your system
 - Old pipe might be fine so long as meets performance requirements

Understanding your system is key:

Prime Factor - Knowing Your System

- Most high-level replacement estimates based on age or age surrogates
- Using age may result in much good pipe un-necessarily replaced
- Using CA often find small % of suspect pipe needing renewal

(Water Research Foundation, 2013)

So what's a Utility to do? A Case Study: AWWU

- Use both statistical methods and condition assessment!
 - -- Revised cohorts definition → conducted in-depth statistical failure analysis
 - -- Accessed flexible suite of powerful analytical tools
- Built internal analytical capacity:
 - -- Secured tools and training to run all planning studies update results, and address additional planning questions.
 - -- Used infraPLAN:
 - Developed and implemented models acquired by AWWU
 - Offered training
- Ran initial studies then validated statistical results with field inspection !!!^{infrePLAN}

• 5 Treatment Plants

EKLUTNA WTF

- 836 Miles Water Main
- 751 Miles Sewer Main
- Over 7000 Fire Hydrants
- 17 Wells
- 22 Reservoirs
- 38 Sewer Pump/Lift Stations
- 34 Water Booster Stations

DWOOD

Approach and Tools

- Historical Failure Analysis Descriptive Statistics (system level)
- Failure *Prediction* Casses (pipe level)
- Projects Selection Annual Replacement Plan (pipe)
- Schedule Optimization Economic Replacement Pipe Model (pipe)

Define Cohorts Historical Break Analysis

- Calculate break rate based on:
 - Risk Factors:
 - Pipe (Year of Installation, Material, Diameter, Length)
 - Environmental Risk Factors (Traffic, Soil, etc)
 - Year of the break
 - Age at time of break
- Average Age now

AWWU Cohorts

- Asbestos Cement
- Cast Iron Post_65 Bad Soil
- Cast Iron Post_65 Good Soil
- Cast Iron Pre_65 Bad Soil
- Cast Iron Pre_65 Good Soil
- Ductile Iron Bad Soil
- Ductile Iron Good Soil

Ageing Curve Extrapolation from Past History

Not always possible...

Predictive Statistical Model

Sensitivity Analysis

Application of the model:

Inspection Area

Capital Planning Project / Process

First section of pipe recommended for replacement using Economic Pipe Replacement Model, which uses TBL failure costing in conjunction with statistical failure forecasting.

Capital Planning Project / Process

Nearby portions recommended by the Water Mains Asset Management Plan after engineering review due to proximity and similarity (same vintage, material and installation) to EPRM recommended pipe.

Capital Planning Project / Process

Condition Assessment was recommended to confirm replacement need prior to replacing due to minimal failure history

Technology Selection & Planning

 PICA See Snake Tool

 Remote field technology measure wall thickness

- Equipment Shipment
- Coordination with Railroad
 - 10 Day Work Period
 - Limited Inspection Windows 3PM 11PM
 - Early Excavation Prep for Launch Pits

Inspection Results – 10 Inch Main

10 Inch – Inspected 233ft out of 1020ft planned

- Average wall thickness 86%
- Two localized defects with wall thickness losses of up to 67%

Inspection Results – 12 Inch Main

- 12 Inch Inspected 1285ft out of 1570ft planned
 - Average wall thickness 96% and 94%
 - 12 localized defects with wall thickness losses of up to 75%

Inspection Results – 16 Inch Main

16 Inch - Inspected 742ft out of 1400ft planned

- Average wall thickness 92%
- Two localized defects with wall thickness losses of up to 53%

Inspection reveals critical pipe wall loss locations

A bullseye – Murphy's Law wins again! 🗙 marks the spot

Inspection Results – Lab Samples

6 Samples tested for:

- Wall Thickness

	WALL THICKNESS RANGE	AVERAGE WALL THICKNESS	
PIPE SAMPLE	(IN)	(IN)	
1	0.370-0.570	0.477	
2			
Pipe only	0.370-0.377	0.374	
With liner	0.461-0.475	0.467	
3	0.365-0.463	0.404	
4	0.376-0.427	0.401	
6	0.490-0.707	0.590	

Corrosion Pitting

PIPE SAMPLE	MEASUREMENT LOCATION	AVERAGE DEPTH (IN)	MAXIMUM DEPTH (IN)
	OD	0.122	0.146
1	ID	0.091	0.130
	OD	No visible pitting	No visible pitting on
2	ID	on either surface	either surface
	OD	0.052	0.070
3	ID	0.148	0.262
	OD	0.057	0.096
4	ID	0.169	0.193
	OD	0.056	0.070
6	ID	0.143	0.184

Cost of Inspection

Contract Costs

- PICA
- Local Excavation Support (BC Excavating)

Internal Costs

- Engineering
- Project Management
- Distribution Operations Staff

	ΡΙϹΑ	BC Ex	Labor	Over	Total
Planned	\$ 135,000	\$ 377,500	\$ 22,000	\$ 5,000	\$ 539,500
Actual	\$ 139,421	\$ 365,527	\$ 45,843	\$ 11,465	\$ 562,256

Cost of Inspection

		Planned		Actual
Contract Cost	\$5	\$ 512,500		04,948
Inspection feet	3,990			2,260
	\$ 516,490		\$50	07,208
Contract \$/Ft	\$	128/LF	\$	223/LF
In-House Costs	-	27,000	\$ 5	57,308
Total Costs	\$ 5·	\$ 543,490		54,516
Total \$/Ft	\$	136/LF	\$	250/LF

- Big difference was in LF inspected
- Improve with lessons learned infroPLAN

Factors Impacting Inspection Cost

- Alaska Relative cost differentials !
- Fixed Costs Transportation and Mobilization
- Accurate Pipe Data
 - Size
 - Historic repairs
- Planning
 - Plan for extra time due to fixed costs
- Indirect Costs
 - Railroad Customer Impact

Value of Condition Assessment

• Direct Benefits

-- Reduction in project scope vs. what we would have done if CA was not available

Without Condition Assessment				With Co	
	LF to		Replacement		LF to
I	Replace	\$/Ft	Cost		Repla
10inch	1020	<u>୧ ୫୦୫</u>	\$ 821 212	10inch	0
10:00 ch	1020	\$ 000 ¢ 011	¢ 1 420 240	12inch	856
12inch	1570	\$ 911	\$ 1,430,349	16inch	742
16inch	1400	\$ 1,103	\$ 1,544,088		# of
Total	3990		\$ 3,798,678		Repai
				10inch	1

١	With Condition Assessment				
	LF to			Replacement	
	Replace		\$/Ft	Cost	
LOinch	0	\$	770	\$ -	
L2inch	856	\$	910	\$ 778,960	
L6inch	742	\$	1,050	\$ 779,397	
	# of				
	Repairs	\$/	Repair	Repair Cost	
LOinch	1	\$ 4	40,000	\$ 40,000	
L2inch	2	\$	45,000	\$ 90,000	
L6inch	0	\$	50,000	\$ -	
fotal R&R Cost				\$ 1,688,357	
			100 million (100 million)		

infraPlAA

Value of Condition Assessment

• Direct Benefits

-- Reduction in project scope vs. what we would have done if CA was not available

Capital Reduction	\$ 2	2,110,321
Depreciation Rate Annual Depreciation Savings	\$	1.8% 37,986
Cost of Capital Annual Cost of Capital Savings	\$	6.1% 128,519
Total Annual Savings Condition Assessment Cost	\$ \$	166,505 564,516
Payback Period		3.4 Years

Value of Condition Assessment

Direct Benefits

- -- Reduction in Project scope vs. what we would have done if CA was not available
- -- Reduction in Risk Cost
 - Pipe specific failure rate predictions based on known pipe deficiencies, and pipe cohort escalation rate
 - TBL Costs Emergency Repair, Social Impact(Railroad), Fines, Environmental Impact
 Failure rate predict

Conclusions

- Statistical methods combined with condition assessment can provide an effective set of tools to improve renewal planning efforts
- Condition Assessment can be cost effective and worthwhile, but be certain to plan well and know when and where to use it effectively (see above!)

Questions?

avanraven@infraplanllc.com 917/349-6386

