

Doug Manarin, P.Eng. Asset Manager - Streets Infrastructure Management Group Engineering Services

PRESENTATION AGENDA

- Engineering's Asset Management Strategy and Framework
- Integrated Infrastructure Management
 System
- Multiple Criteria Decision Making
- Pilot Project with Streets Pavement Assets
- Moving Forward

CITY OF VANCOUVER OVERVIEW

Population 603,500

(2011)

- 115 km²
 - Constrained land base, built out, redevelopment
- \$14B of Public
 Works assets
 - About 74% of City-wide asset pool

ASSET MANAGEMENT STRATEGY

INTEGRATED INFRASTRUCTURE MANAGEMENT SYSTEM

- Asset Centric Approach

DECISION MAKING FRAMEWORK EVOLUTION

Then...

- Asset decisions based on limited data
- Condition/Age Focus

Now... LOS LCA **Decision** Service Risk & Criticality Life

MULTI-CRITERIA DECISION MAKING

- Streets Pavement Assets

- 2100 km Streets
 - 121 km Regional Arterial
 - 243 km Arterial / Collector
 - 1058 km Local Streets
 - 650 km Lanes
- \$4 Billion Replacement
 Value
 - Surface Valuation \$750 M
- Annual Rehab Budget
 ~\$10 Million
- Network PCI ~ 70
- Age ~ 34 Years

- Level of Service

- Level of Service

- Service Life

- Life Cycle

- Focus on "next action" vs "cradle to grave" life cycle - optimize OM&R
- Evaluated Treatment Alternatives (EAC)
- Determined Treatment Windows (LOS, Service Life, EAC treatment costs)
 - Economic cut-offs
 - Performance cut-offs
 - Service Level implications

Local Patching

- \$90/m2
- 10 Year Service Life
- EAC (4%) \$11.10/yr

Thin Lift Overlay

- \$15/m2
- 10+ Year Service Life
- EAC (4%) \$1.85/yr

- Life Cycle Benefit-Cost Theory
- Established Asset Base -Forward Looking Analysis
- Multiple treatment options
- Quality of Service over time
- Total Cost for each option
- Optimize performance and life cycle costs

- Life Cycle Benefit-Cost Theory

- Risk/Criticality
- Understanding Priorities
- Risk and Criticality

- Assessing a Risk Rating for Assets
- Relative / Global

BRINGING IT ALL TOGETHER

- Decision Modelling

- Use criteria to identify needs
- Prioritize what to do
- Leverage our integrated IM System

Applied our theory with the Hansen Advanced Asset Analysis tools

- Hansen Advanced Asset Analysis

Technical Analysis

- Treatments / Timing
 - Performance
 - Economics
 - Risk / Priorities

Recommended

Treatments

- Analysis Period
- Treatment Selection (B/C)
 - Unconstrained Results

Needs Analysis

Decision Tree

Result Node - Multiple Activities

- Benefit
 - Cost
- Timing
- Constrained Results
- Funding Rules, Multi-Year
 - B/C Ranking
- Unfunded Activities Deferred

Budget Analysis

- Candidates

Asset Data

- Candidates

 Preventative Mtce (Crack Sealing)

- Candidates

- Asset Data
- Preventative Mtce (Crack Sealing)
- Corrective Mtce (Patching)

- Candidates

- Asset Data
- Preventative Mtce (Crack Sealing)
- Corrective Mtce (Patching)
- Rehabilitation (Paving)
 - Coordination with Utilities

- Funding Choices/Impacts
- Decision process for each asset
- Optimize treatments for the network
- Competing for funding with other priorities
- Inform/show impacts of funding choices

- Needs Analysis

- LOS/Condition Projections

- LOS/Condition Projections

- LOS/Condition Projections

- Customer Complaint Projections

- Financial Projections - Maintenance and Rehabilitation

- Life Cycle Costs

- Life Cycle Costs

ASSET MANAGEMENT FRAMEWORK Leveraging IMS for Decision Support

Then...

- Limited network data
- Mainly subjective
- Expert opinion
- Perceived problems/priorities
- Manual review and coordination
- Silo approach
- Focus on priority

Now...

- Consistent approach
- Centralized, accessible, reliable network data
- Centralized coordination
- Imbedded expertise
- Quantitative condition and maintenance information
- Multiple criteria approach

ASSET MANAGEMENT STRATEGY

- Moving Forward
- Developed the Framework
 - Tested the Structure and the Building Blocks
 - Demonstrate how AM can help support our decisions
 - Integrating Multi-Asset
 Coordination and Optimization
 - Updating Models and Strategies
- Extending to Sewer and Water
 - AM Plans (core review)
 - Detailed Analysis
- Spatial Analysis and Data Links

CITY OF VANCOUVER - ASSET MANAGEMENT

For more information:

Andrea Becker
Doug Manarin
Upkar Matharu

andrea.becker@vancouver.ca doug.manarin@vancouver.ca upkar.matharu@vancouver.ca

