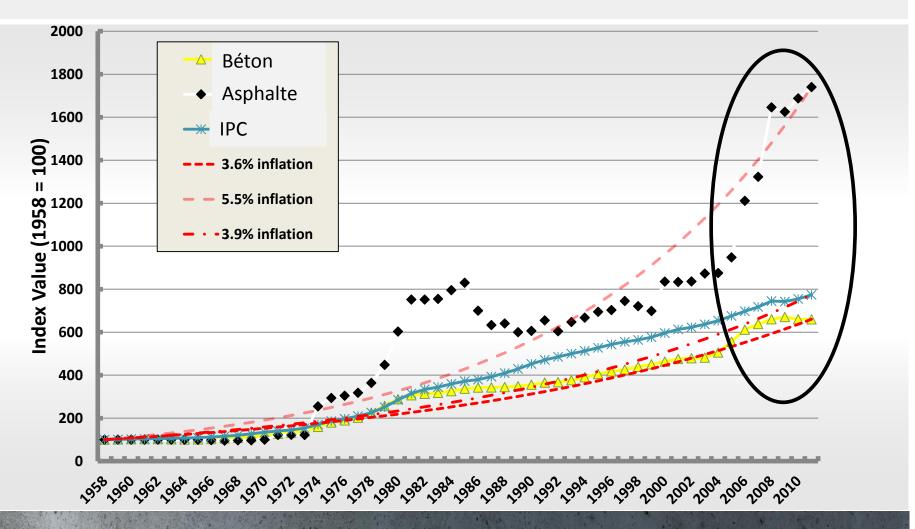


le béton...génial!"



le béton...génial!"

INDICE DES PRIX À LA CONSOMMATION

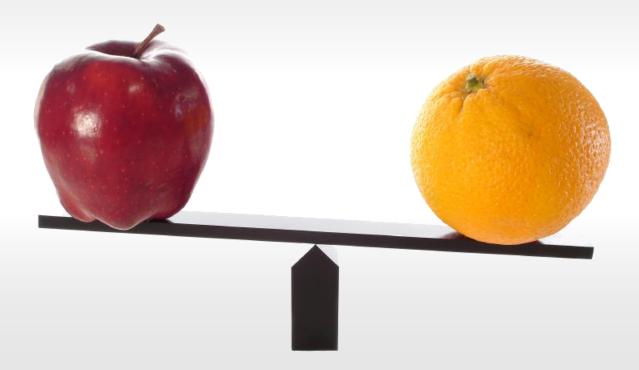
EXPÉRIENCE DU MTQ, DIRECTION TERRITORIALES CHAUDIÈRES-APPALACHES

- > Expérience récente : A20 St-Apollinaire
- Coûts du projet 2010-2011: 17 M\$
- Évaluation des coûts:
 - Reconstruction en enrobé: 1299.71 \$/mMarquage à l'époxy
 - Reconstruction en béton: 1376.53 \$/m (+ 5,9%)Marquage par incrustation
 - Recouvrement en béton: 966.24 \$/m (-15,6%)Marquage par incrustation

EXPÉRIENCE DU MTO

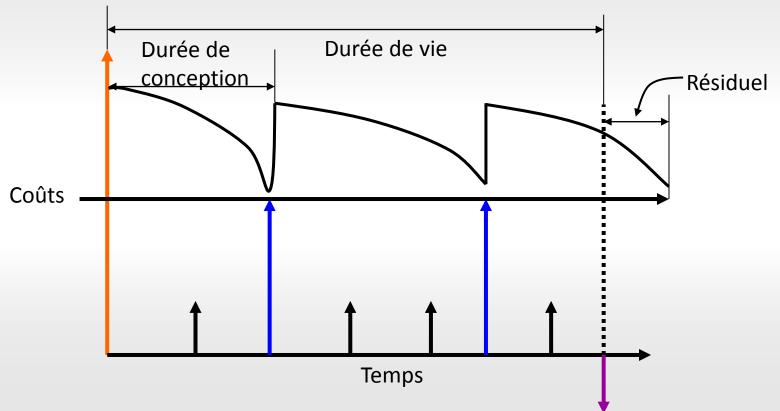
- Appel d'offre selon soumissions alternatives (Béton – Enrobé bitumineux)
- ➤ Historique de 10 cas
- Béton est l'option la moins chère en terme d'ACCV pour les 10 cas
- Moins cher au niveau du coût initial dans les 2 derniers cas (sans inclure M&R)

le béton...génial!"


CRITÈRES D'UN ACCV D'UNE CHAUSSÉE (1/2)

- Période d'analyse
 - Assez longue pour inclure construction, entretien/réhabilitation, et <u>au moins une</u> intervention majeure pour chacune des alternatives (50 ans pour MTQ).
- > Taux d'actualisation (5%)
- > Coûts initiaux, utilisateurs, entretien
- Valeur résiduelle (gestion des actifs)

CRITÈRES D'UN ACCV D'UNE CHAUSSÉE (2/2)


Comparaison des alternatives

ACCV D'UNE CHAUSSÉE

Comprendre la performance anticipée d'un pavage et les coûts identifiés à son entretien

BUTS DE L'ÉTUDE (1/2)

- Développer des conceptions de pavages équivalentes pour les chaussées municipales
 - Utilise la technologie la plus à jour pour la conception routière(DARWin ME)
 - Conception pour collectrices, artères mineures et majeures (pavages flexibles et rigides)
 - Volumes quotidiens de camions entre 250 et 10 000

BUTS DE L'ÉTUDE (2/2)

- Développer un calendrier d'entretien et de réparation pour chacun des types de route
 - Traitements typique d'entretien et de réhabilitation des pavages
 - Durée de vie moyenne de 50 ans
- Rendre les résultats accessibles et faciles à utiliser afin d'orienter le décideur vers la meilleure option
 - Conception ou soumission alternative

EXEMPLE DE RAPPORT

Development of a Pavement Structural Design Matrix for Municipal Roadways in Quebec INCLUANT L'ENTRETIEN, LA RÉHABILITATION ET L'ANALYSE DES COÛTS ET DU CYCLE DE VIE

Version finale disponible en décembre 2012

CONCEPTION DE CHAUSSÉE

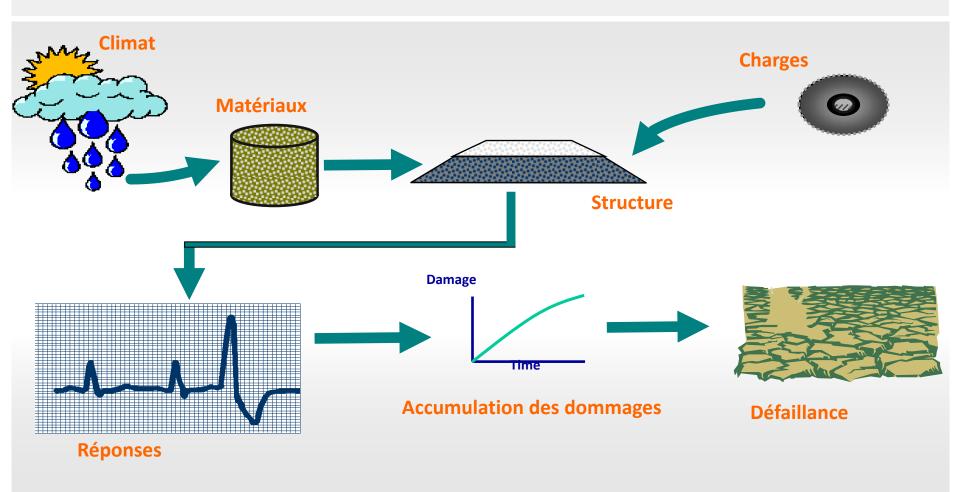
DARWIN ME

POUR

- DARWin ME Excellent outil
- Considère plusieurs facteurs et prédit quand et comment le pavage va se détériorer
- Économise de l'argent via l'optimisation

CONTRES

- Coûte cher \$\$\$
- Manque de connaissance dans les technologies du pavages et les intrants – valeurs par défaut non apllicable à l'échelle locale
- Pas accessible pour plusieurs ingénieurs municipaux



CRITÈRES DE PERFORMANCE

Caractéristiques générales des pavages				
Durée de conception	30 ans			
Fiabilité (reliability) du design	Collectrice - 75%			
	Artère mineure - 80 %			
	Artère majeure- 90%			
	(2,500 to 5,000 AADTT)			
	Artère majeure - 95%			
	(7,500 to 10,000 AADTT)			
Limites de mise en service des chauss	ées souples			
Fissuration de fatigue (alligator)	10 %			
Fissuration thermique	200 m/km			
Orniérage	10 mm			
International Roughness Index (IRI)	3.0 mm/m			
Limites de mise en service des chauss	ées rigides			
Dalles fissurées 10 %				
Faulting 6 mm				
International Roughness Index (IRI)	3.0 mm/m			

CONCEPTION STRUCTURALE

MATÉRIAUX

Sol en place

Propriétés du sol	Argile à faible plasticité	Silt inorganique	Sable silteux
Catégorie de résistance de la sous-fondation	Faible	Moyen	Élevé
Module de résilience (moyenne annuelle)	30 MPa	40 MPa	50 MPa
CBR Equivalent	3	4	5
Classification des sols	CL	ML	SM
Limite de liquidité	30	20	8
Index de plasticité	20	5	2

Fondation granulaire

- -150 mm MG 20
- Épaisseurs variables de MG 112 (si requises)

REVÊTEMENTS DE CHAUSSÉE (1/2)

Béton

Propriétés	Valeurs
	35 MPa – 28d f'c
Résistance du béton	4.5 MPa – 28d flexion
	29.6 GPa - 28d M. Élastique
Masse volumique	2350 kg/m^3
Classe d'exposition CSA	C-2
Rapport eau/liant maximal	0,45

REVÊTEMENTS DE CHAUSSÉE (2/2)

Asphalte

Propriétés	ESG 10 (Surface)	ESG 14 (Base)
Type de bitume	Variable selon traffic et con	nditions climatiques (zone 1 et 2)
Masse volumique	2402 kg/m^3	2402 kg/m^3
Teneur effective en bitume	12,2 %	11,4 %
Volume de vides	4,0 %	4,0 %
Granulométrie passant 19 mm	100 %	100 %
Granulométrie passant 9,5 mm	96%	75%
Granulométrie passant 4,75 mm	53%	44 %
Granulométrie passant 75 μm	7 %	6 %

Ville	Type de bitume	Collectrice	Artère mineure	Artère majeure
Québec	ESG 10 (Surface)	58-34	64-34	64-34
"Zone 2"	ESG 14 (Base)	58-34	58-34	58-34
Montréal	ESG 10 (Surface)	64-28	70-28	70-28
"Zone 1"	ESG 14 (Base)	58-28	64-34	64-34

DISTRIBUTION DE LA CIRCULATION

	Véhicules commerciaux		Distribution	n des véhicules	commerciaux
Classe FHWA			Collectrice	Artère mineure	Artère majeure
4		Two or Three Axle Buses	2.9 %	3.3 %	1.8 %
5		Two-Axle, Six-Tire, Single Unit Trucks	56.9 %	34.0 %	24.6 %
6		Three-Axle Single Unit Trucks	10.4 %	11.7 %	7.6 %
7		Four or More Axle Single Unit Trucks	3.7 %	1.6 %	0.5 %
8		Four or Less Axle Single Trailer Trucks	9.2 %	9.9 %	5 %
9		Five-Axle Single Trailer Trucks	15.3 %	36.2 %	31.3 %
10		Six or More Axle Single Trailer Trucks	0.6 %	1.0 %	9.8 %
11		Five or Less Axle Multi-Trailer Trucks	0.3 %	1.8 %	0.8 %
12		Six-Axle Multi- Trailer Trucks	0.4 %	0.2 %	3.3 %
13		Seven or More Axle Multi-Trailer Trucks	0.3 %	0.3 %	15.3 %

MATRICE DE CONCEPTION SIMPLIFIÉE

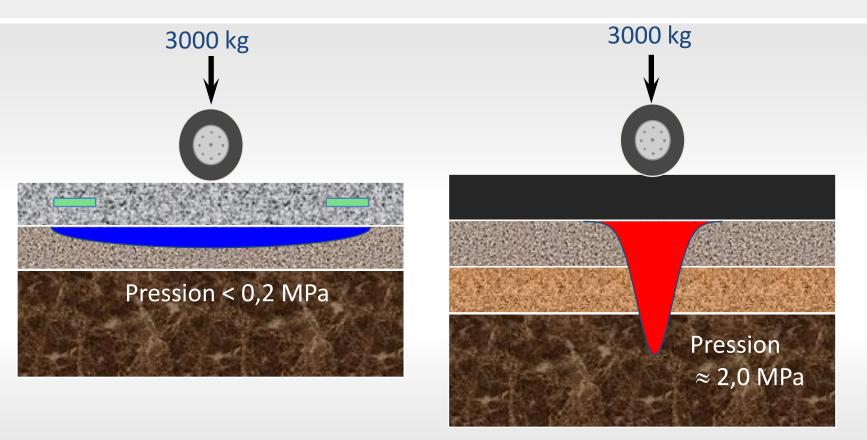
					Average Annual D	aily Truck Traffic (AAD)	TT) - 30 Year Pavement D	esign-Québec City		
			Collector		Minor A	Arterial	Major Arterial			
			250	500	1,000	1,500	2,500	5,000	7,500	10,000
	30 MPa (CBR=3)	PCC	175 mm PCC 150 mm MG 20	185 mm PCC 150 mm MG 20	200 mm PCC 150 mm MG 20	210 mm PCC 150 mm MG 20	220 mm PCC 150 mm MG 20	230 mm PCC 150 mm MG 20	220 mm PCC 150 mm MG 20	230 mm PCC 150 mm MG 20
		НМА	50 mm ESG 10 55 mm ESG 14 150 mm MG 20 350 mm MG 112	50 mm ESG 10 55 mm ESG 14 150 mm MG 20 350 mm MG 112	50 mm ESG 10 80 mm ESG 14 150 mm MG 20 450 mm MG 112	50 mm ESG 10 90 mm ESG 14 150 mm MG 20 450 mm MG 112	50 mm ESG 10 110 mm ESG 14 150 mm MG 20 450 mm MG 112	50 mm ESG 10 130 mm ESG 14 150 mm MG 20 550 mm MG 112	50 mm ESG 10 150 mm ESG 14 150 mm MG 20 550 mm MG 112	50 mm ESG 10 170 mm ESG 14 150 mm MG 20 600 mm MG 112
Strength	40 MPa (CBR=4)	PCC	175 mm PCC 150 mm MG 20	185 mm PCC 150 mm MG 20	200 mm PCC 150 mm MG 20	210 mm PCC 150 mm MG 20	220 mm PCC 150 mm MG 20	230 mm PCC 150 mm MG 20	220 mm PCC 150 mm MG 20	230 mm PCC 150 mm MG 20
Subgrade		НМА	50 mm ESG 10 55 mm ESG 14 150 mm MG 20 350 mm MG 112	50 mm ESG 10 55 mm ESG 14 150 mm MG 20 350 mm MG 112	50 mm ESG 10 80 mm ESG 14 150 mm MG 20 350 mm MG 112	50 mm ESG 10 90 mm ESG 14 150 mm MG 20 350 mm MG 112	50 mm ESG 10 110 mm ESG 14 150 mm MG 20 400 mm MG 112	50 mm ESG 10 130 mm ESG 14 150 mm MG 20 450 mm MG 112	50 mm ESG 10 160 mm ESG 14 150 mm MG 20 450 mm MG 112	50 mm ESG 10 170 mm ESG 14 150 mm MG 20 500 mm MG 112
					•					
	50 MPa (CBR=5)	PCC	175 mm PCC 150 mm MG 20	185 mm PCC 150 mm MG 20	200 mm PCC 150 mm MG 20	210 mm PCC 150 mm MG 20	220 mm PCC 150 mm MG 20	230 mm PCC 150 mm MG 20	220 mm PCC 150 mm MG 20	230 mm PCC 150 mm MG 20
		НМА	50 mm ESG 10 55 mm ESG 14 150 mm MG 20 300 mm MG 112	50 mm ESG 10 55 mm ESG 14 150 mm MG 20 300 mm MG 112	50 mm ESG 10 80 mm ESG 14 150 mm MG 20 300 mm MG 112	50 mm ESG 10 90 mm ESG 14 150 mm MG 20 300 mm MG 112	50 mm ESG 10 110 mm ESG 14 150 mm MG 20 350 mm MG 112	50 mm ESG 10 140 mm ESG 14 150 mm MG 20 450 mm MG 112	50 mm ESG 10 160 mm ESG 14 150 mm MG 20 450 mm MG 112	50 mm ESG 10 180 mm ESG 14 150 mm MG 20 500 mm MG 112
Concrete Slab and Joint Properties		No de Slab lengt Tied shoul	h = 4.5 m	25.4 mm Dowel bars, 300 mm spacing Slab length = 4.5 m Tied shoulder/curb *	28.6 mm Dowel bars, 300 mm spacing Slab length = 4.5 m Tied shoulder/curb *	28.6 mm Dowel bars, 300 mm spacing Slab length = 4.5 m Tied shoulder/curb *	28.6 mm Dowel bars, 300 mm spacing Slab length = 4.5 m Tied shoulder/curb *	28.6 mm Dowel ba Slab lengt 0.5 m Widened outside	h = 4.5 m	

Notes:

- · All materials are based on current Transports Québec Specifications
- · Subgrade levels are based on three common subgrade materials in Québec.
 - Low Category (30 MPa) Low Plasticity Clay Subgrade
 - Medium Category (40 MPa) Low Plasticity Silt Subgrade
 - High Category (50 MPa) Sandy Silt Subgrade

Reliability Levels

- AADTT 250 to 500 75%
- AADTT 1,000 to 1,500 80%
- AADTT 2,500 to 5,000 90%
- AADTT 7,500 to 10,000 95%
- * For urban sections, a tied concrete curb or a monolithic slab and curb can be used as a tied shoulder or widened slab respectively.


le béton...génial!™

MATRICE DE CONCEPTION SIMPLIFIÉE

Average Annual Daily Truck Traffic (AADTT) - 30 Year Pavement Design-Québec				t Design-Québec City			
			Major Arterial				
			2,500	5,000	7,500	10,000	
	30 MPa	PCC	220 mm PCC 150 mm MG 20	230 mm PCC 150 mm MG 20	220 mm PCC 150 mm MG 20	230 mm PCC 150 mm MG 20	
	(CBR=3)	НМА	50 mm ESG 10 110 mm ESG 14 150 mm MG 20 450 mm MG 112	50 mm ESG 10 130 mm ESG 14 150 mm MG 20 550 mm MG 112	50 mm ESG 10 150 mm ESG 14 150 mm MG 20 550 mm MG 112	50 mm ESG 10 170 mm ESG 14 150 mm MG 20 600 mm MG 112	
Strength	40 MPa (CBR=4)	PCC	220 mm PCC 150 mm MG 20	230 mm PCC 150 mm MG 20	220 mm PCC 150 mm MG 20	230 mm PCC 150 mm MG 20	
Subgrade Strength		НМА	50 mm ESG 10 110 mm ESG 14 150 mm MG 20 400 mm MG 112	50 mm ESG 10 130 mm ESG 14 150 mm MG 20 450 mm MG 112	50 mm ESG 10 160 mm ESG 14 150 mm MG 20 450 mm MG 112	50 mm ESG 10 170 mm ESG 14 150 mm MG 20 500 mm MG 112	
	50 MPa	PCC	220 mm PCC 150 mm MG 20	230 mm PCC 150 mm MG 20	220 mm PCC 150 mm MG 20	230 mm PCC 150 mm MG 20	
	(CBR=5)	НМА	50 mm ESG 10 110 mm ESG 14 150 mm MG 20 350 mm MG 112	50 mm ESG 10 140 mm ESG 14 150 mm MG 20 450 mm MG 112	50 mm ESG 10 160 mm ESG 14 150 mm MG 20 450 mm MG 112	50 mm ESG 10 180 mm ESG 14 150 mm MG 20 500 mm MG 112	
	Concrete Slab Joint Propert		28.6 mm Dowel bars, 300 mm spacing Slab length = 4.5 m Tied shoulder/curb *	28.6 mm Dowel bars, 300 mm spacing Slab length = 4.5 m Tied shoulder/curb *	28.6 mm Dowel bars, 300 mm spacing Slab length = 4.5 m 0.5 m Widened outside slab or integral curb *		

COMPORTEMENT RIGIDE VS FLEXIBLE

La rigidité du béton répartit la charge sur une plus grande surface ce qui diminue la pression sur l'infrastructure

EXEMPLE DE PROGRAMME DE PRÉSERVATION (CHAUSSÉE RIGIDE)

Artère majeure (AADTT 7,500-10,000)

Années	Description de l'activité	Quantité (pour 1 km)
12	Scellement de joints	25 %
12	Réparation partielle de béton	2 %
25	Réparation partielle de béton	5 %
25	Réparation pleine profondeur de béton	10 %
25	Scellement de joints	50 %
25	Texturisation	25 %
40	Réparation partielle de béton	5 %
40	Réparation pleine profondeur de béton	15 %
40	Scellement de joints	50 %
40	Texturisation	50 %

EXEMPLE DE PROGRAMME DE PRÉSERVATION (CHAUSSÉE SOUPLE)

Artère majeure (AADTT 7,500-10,000)

Années	Description de l'activité	Quantité (pour 1 km)
8	Scellement de fissures	200 m
8	Réparations partielles, mill/patch 40 mm	5 %
13	Scellement de fissures	1000 m
13	Réparations partielles, mill/patch 40 mm	15 %
18	Planage de l'enrobé de surface	50 mm
18	Réparation pleine profondeur en asphalte	10 %
18	Resurfaçage ESG 10	50 mm
23	Scellement de fissures	500 m
28	Scellement de fissures	1500 m
28	Réparations partielles, mill/patch 40 mm	10 %
32	Planage de l'enrobé de surface	90 mm
32	Resurfaçage ESG 14	50 mm
32	Resurfaçage ESG 10	40 mm
37	Scellement de fissures	1500 m
40	Réparations partielles, mill/patch 40 mm	10 %
45	Planage de l'enrobé de surface	50 mm
45	Réparation pleine profondeur en asphalte	10 %
45	Resurfaçage ESG 10	50 mm
48	Scellement de fissures	1500 m

COÛTS UNITAIRES – CONSTRUCTION INITIALE (ONTARIO)

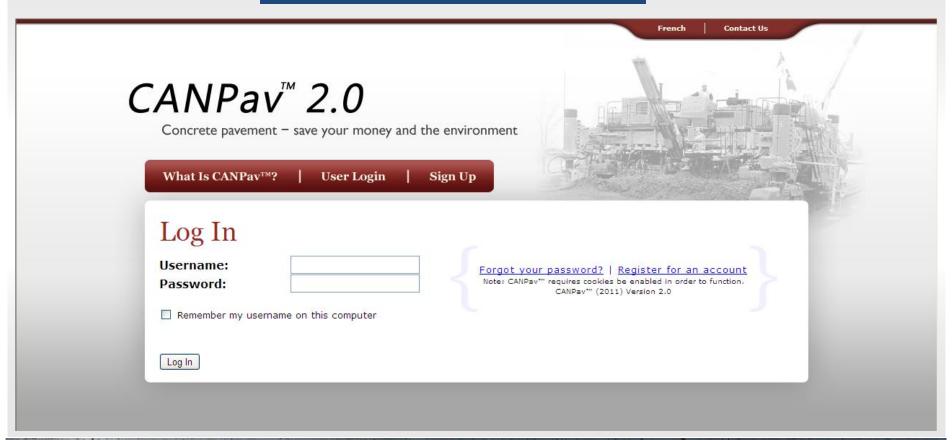
Pavement	Pavement	
Layer	Description of Pavement Layer	Unit Cost
	Superpave 12.5FC2 (t)	\$120.00
HMA	Superpave 12.5FC1 (t)	\$115.00
HMA	Superpave 12.5 (t)	\$105.00
	Superpave 19 (t)	\$96.00
	180 mm PCC pavement, no dowels (m²)	\$41.20
	190 mm PCC pavement, no dowels (m²)	\$42.60
PCC	200 mm PCC pavement, 32M dowels (m²)	\$49.50
	210 mm PCC pavement, 32M dowels (m²)	\$50.90
	230 mm PCC pavement, 32M dowels (m²)	\$53.70
Base	Granular A (t)	\$18.00
Subbase	Granular B (t)	\$15.00
	Earth excavation (m³)	\$18.00
	Rock excavation (m³)	\$150.00
Excavation	Hot mix asphalt pavement excavation (m³)	\$65.00
	Concrete pavement excavation(m³)	\$82.00
	Contaminated material excavation(m³)	\$80.00

COÛTS UNITAIRES – ENTRETIEN ET RÉHABILITATION (ONTARIO)

Description of Maintenance and Rehabilitation Treatments	Unit Costs
Rout and seal (m)	\$5.00
Spot repairs, mill and patch (m²)	\$35.00
Asphalt base repair (m²)	\$45.00
Mill HMA (t)	\$15.00
Resurface with Superpave 12.5FC2 (t)	\$120.00
Resurface with Superpave 12.5FC1 (t)	\$115.00
Resurface with Superpave 12.5 (t)	\$105.00
Resurface with Superpave 19 (t)	\$96.00
Reseal joints (m)	\$10.00
Partial depth PCC repair (m²)	\$125.00
Full depth PCC repair (m²)	\$100.00
Texturize (m²)	\$10.00

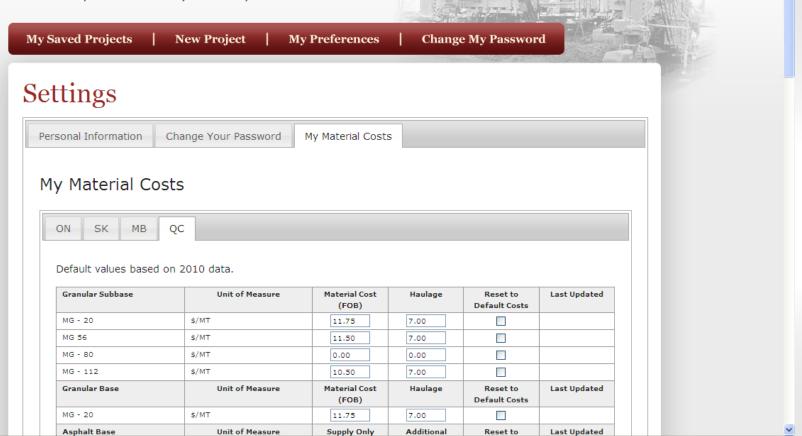
Typical Ontario Municipal Pavements

LIFE CYCLE COST ANALYSIS SUMMARY


Listed by 25 Year AADTT and Pavement Type for Low Strength Subgrade

Item		Collector								
	250 PCC		250 HMA		500 PCC		500 HMA			
Initial Cost	\$	425,100	\$	430,236	\$	436,950	\$	448,236		
M&R Cost (Discounted)	\$	32,955	\$	64,406	\$	32,955	\$	64,406		
Total Cost	\$	458,055	\$	494,642	\$	469,905	\$	512,642		
LCC Difference		7%				8%				
		Minor Arterial								
	1	,000 PCC		1,000 HMA		1,500 PCC		1,500 HMA		
Initial Cost	\$	490,050	\$	494,748	\$	490,050	\$	513,810		
M&R Cost (Discounted)	\$	57,553	\$	87,998	\$	57,553	\$	86,278		
Total Cost	\$	547,603	\$	582,746	\$	547,603	\$	600,088		
LCC Difference		6%				9%				
Item		Major Arterial								
	2,500 PCC			2,500 HMA		5,000 PCC		5,000 HMA		
Initial Cost	\$	980,100	\$	1,065,744	\$	980,100	\$	1,211,868		
M&R Cost (Discounted)	\$	136,916	\$	191,192	\$	136,916	\$	191,192		
Total Cost	\$	1,117,016	\$	1,256,936	\$	1,117,016	\$	1,403,060		
LCC Difference		11%			20%					
Item		Major Arterial								
	7	,500 PCC		7,500 HMA		10,000 PCC	1	10,000 HMA		
Initial Cost	\$	1,070,720	\$	1,333,325	\$	1,121,280	\$	1,382,054		
M&R Cost (Discounted)	\$	170,523	\$	342,478	\$	170,523	\$	349,035		
Total Cost	\$	1,241,243	\$	1,675,803	\$	1,291,803	\$	1,731,090		
LCC Difference		26% 25%								

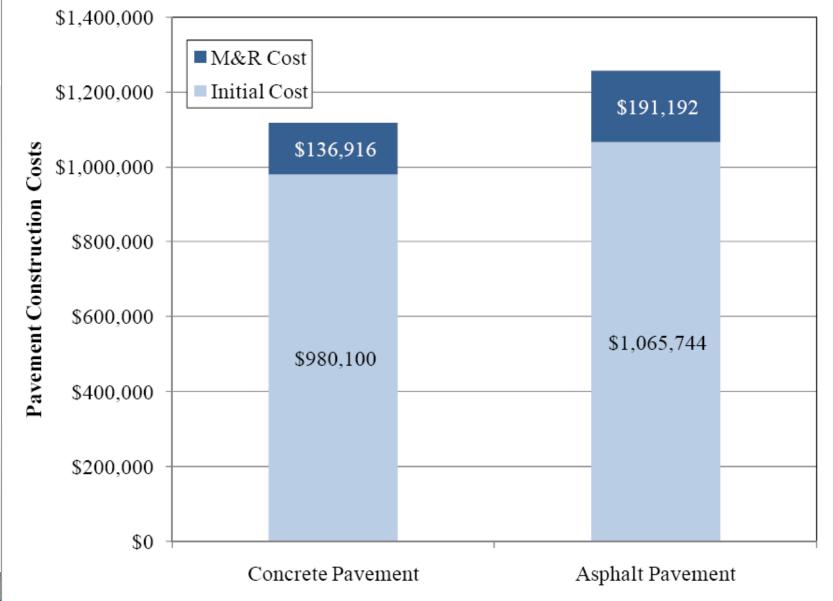
ACCESSIBILITÉ DES RÉSULTATS


WWW.CANPAV.COM

CANPav[™] 2.0

Concrete pavement - save your money and the environment

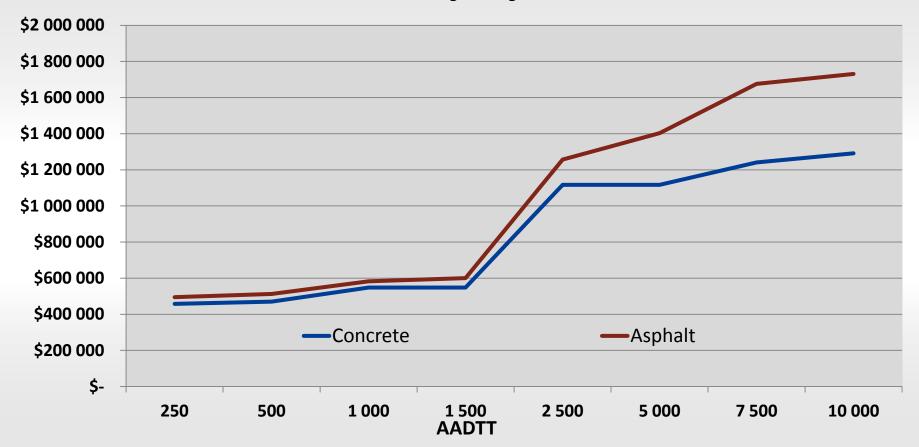
Internet


Asphalt

Structure	Thickness	Material Type	Quantity	Unit of Measure	Supplied & Placed		
					\$/UoM	\$/m²	Total Cost
Granular Subbase	450 mm	Granular B Type 1	6,750	MT	\$18.75	\$16.88	\$126,562.50
Granular Base	150 mm	Granular A	2,700	MT	\$21.75	\$7.83	\$58,725.00
Asphalt Base	90 mm	SP19 OPSS 58-28	1,661	MT	\$105.00	\$23.25	\$174,352.50
Asphalt Top	40 mm	SP12.5 FC1 OPSS 64-28	756	MT	\$115.00	\$11.59	\$86,940.00
Excavation Costs			5,475	m³	\$18.00	\$13.14	\$98,550.00
Initial Costs	730 mm					\$72.68	\$545,130.00
Total M & R Costs							\$ 87,997.59
Total Life Cycle Cost							\$ 633,127.59

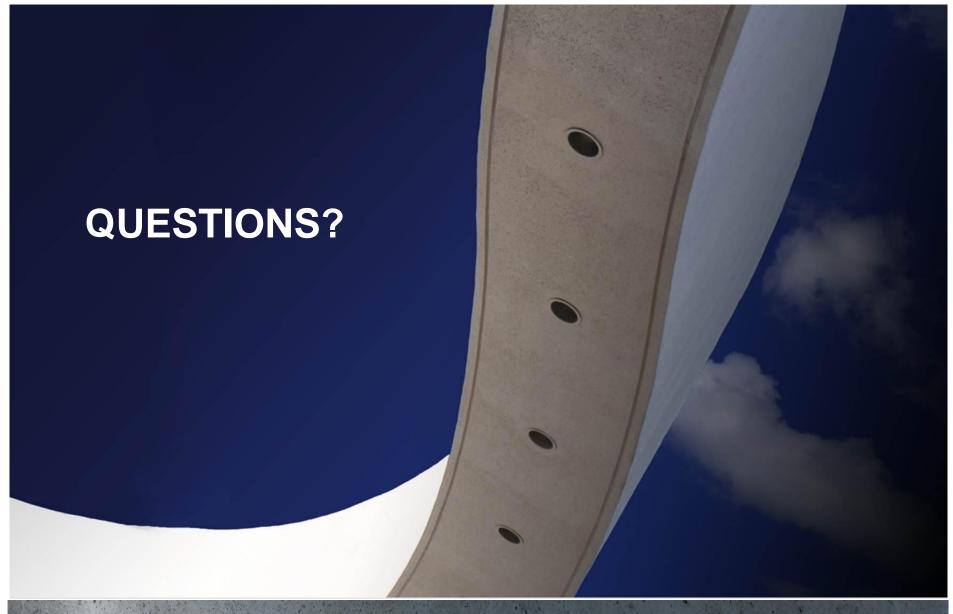
Concrete

Structure	Thickness	Material Type	Quantity	Unit of Measure	Supplied & Placed		
					\$/UoM	\$/m²	Total Cost
Granular Base	200 mm	Granular A	3,600	MT	\$21.75	\$10.44	\$78,300.00
Concrete	200 mm	C - 2 (32 MPa)	1,500	m³	\$220.00	\$44.00	\$330,000.00
Dowel Costs			7,500	m²	\$ 5.00	\$ 5.00	\$ 37,500.00
Excavation Costs			3,000	m³	\$18.00	\$7.20	\$54,000.00
Initial Costs	400 mm					\$66.64	\$499,800.00
Total M & R Costs							\$ 57,553.15
Total Life Cycle Cost							\$ 557,353.15



COMPARAISON DE L'ANALYSE DES COÛTS ET DU CYCLE DE VIE (ONTARIO)

EN CONCLUSION (1/2)


- L'ACCV comprend la prédiction des performances des chaussées et l'évaluation des coûts initiaux et futurs afin de déterminer la solution la plus rentable
- Il y a des outils disponibles pour aider les décideurs à choisir une solution de pavage qui est conforme à leurs objectifs

EN CONCLUSION (2/2)

Le développement d'outils de conceptions structurales adaptés aux matériaux et aux conditions environnementales du Québec permet d'aider les décideurs à prendre des décisions responsables et rigoureuses

le béton...génial![™]

Association Canadienne du Ciment